
Getting started with Constraint Grammar

Kevin Donnelly∗

Abstract

Once you have got CG installed, as described in Chapter 3 of the man-
ual, you will want to start using it. This note describes how to do this, using
Welsh as the target language. Bear in mind that it only scratches the sur-
face of what is a very elegant and versatile system, about which I myself
have a great deal still to learn.

1 Preparing input text

The first step is to take each surface form in your text, and make a list of the
possible lemmas (lexemes in CG terminology) it could derive from, along with
relevant morphological tags. For instance, in Welsh, the surface form mae
could derive from the verb bod (be), or it could derive from the noun bae (bay ).
Setting these facts out in the default CG format gives:

"<mae>"
"bod" vfle 3s present :be:
"bae" n nm m s :bay:

The format lists the surface form in angle brackets and quotes, followed by a
newline (\n). Then the “readings” (i.e. lemma + tags) are listed on separate
lines - first a tab (\t), then the lemma in quotes, and then any morphological
tags you have assigned, and finally a newline (\n). In the above case, mae
could be either an inflected verb (the third person singular, present tense of
bod), or a noun (a nasally-mutated form of the masculine singular noun bae).
CG does not enjoin any specific morphological tags - you are free to choose
whatever ones best suit your goals. In the above sample, I have chosen to
include an English gloss for the lemma as one of the tags, surrounded by colons
to set it apart from the other tags.

Each surface form in your text must be treated in the same way, so for the
sentence:
Mae Brian yn gweithio yn ofnadwy o galed yn y swyddfa.
Brian is working terribly hard in the office.

∗I am grateful to Tino Didriksen for comments on earlier drafts of this tutorial.

1



you should end up with something like the following (which is referred to as
cysample.txt in the rest of the tutorial):

"<Mae>"
"bod" vfle 3s present :be:
"bae" n nm m s :bay:

"<Brian>"
"Brian" unk

"<yn>"
"yn" part stative
"yn" p :in:

"<gweithio>"
"gweithio" vinf :work:
"gweithio" vfle 3s subjunctive :work:

"<yn>"
"yn" part stative
"yn" p :in:

"<ofnadwy>"
"ofnadwy" a :terrible:

"<o>"
"o" p :from:
"o" p :of:

"<galed>"
"caled" a sm :hard:

"<yn>"
"yn" part _stative
"yn" p :in:

"<y>"
"y" part indrel
"y" t :the:

"<swyddfa>"
"swyddfa" n f s :office:

"<$.>"

Preparing your texts in this way can of course be done manually, but it is much
easier to use an automated system of some kind to generate the possible lem-
mas and morphological tags for each surface form. In the above case, the
output is created by having a PHP script read each word of the text, look it up
in a dictionary database table that includes the various morphological tags, and
write everything out in the CG format.

The tags I use here are self-explanatory: p=preposition, vinf=verb infinitive,
a=adjective, f=feminine, t=definite article, c=conjunction, part=particle, indrel-
=indirect relative, unk=unknown. The period or full-stop at the end of the sen-
tence is given its own entry.

CG passes along untouched any text that is in non-CG format - anything that
will not parse will be left as-is, so you can mix (for instance) plain text or HTML
with CG text. We could have done this with the name Brian above, but this

2



means that you lose context, since you cannot query this surface form. So the
script outputs unknown words in CG format, but with the default tag unk.

2 The first grammar rule

In the above text, you can see that there are several instances of ambiguous
readings, which is what we hope CG will solve for us. Apart from mae already
mentioned, there are ambiguities with yn (stative particle or preposition), gwei-
thio (infinitive or subjunctive), o (two possible meanings), and y (definite article
or indirect relative particle).

The next step is to write grammatical rules which CG will use to select one
of these forms rather than the other, and provide us with at least partially-
disambiguated text. In a text-editor, tell CG first of all what delimiters will be
used for sentence boundaries. For this example text, we only need one – a
period or full-stop:

delimiters = "<$.>";

Keywords such as DELIMITERS are usually capitalised, but I find the text eas-
ier to read if they are not.

The next part of the grammar is for convenience - we list sets of tags to de-
lineate particular grammatical features, which makes it easier to zero in on
specific groups of morphological features. In this example, most of our set def-
initions will do no more than expand the tags so that they are easier to read, as
in the first 7 lines below.

list noun = n;
list inflected = vfle;
list infinitive = vinf;
list preposition = p;
list particle = part;
list adjective = a;
list conjunction = c;
list nmnoun = (n nm);

The last set definition, however, combines two tags to make a new set, that
of nasally mutated nouns. Note that when we use two or more tags like this
to create a set we must put them in parentheses, which are optional for single
tags.

The format is: the keyword LIST, then the name of the set, then an equals sign,
then the tags which will be included in the set, and finally a semicolon. For
instance, we could declare a set of third-person singular, present tense verbs
with aspirate mutation as follows:

3



list asp_3s_pres = (am 3s present);

Sets can also be manipulated by using the keyword SET. So if we wish to define
a new set of feminine nouns:, we can write the following declaration:

set fem_noun = noun + (f);

adding the tag f to the previously-defined set noun. By enclosing the tag in
parentheses we create an on-the-fly inline set, which the + function can work
with. Alternatively, we could define a new set for feminine items:

list feminine = f;

and then combine that with the noun set:

set fem_noun = noun + feminine;

The next part of the grammar is another keyword, SECTION. Basically, this
says that we are now starting the actual rules. You can have multiple rule
sections, each of which can be given an optional name, and they can be run
sequentially, or in isolation, or in repeated groups. For this example, we have
only one section.

Now come the actual grammar rules which will disambiguate examples such
as mae. We can say (with some slight simplification for this example) that
nasally-mutated nouns will only ever occur after a few specific words like the
preposition yn (in), or the possessive fy (my). So we can write a rule that says,
for this instance: ‘remove from consideration any reading relating to bae (bay )
if the preceding word is not a form of the lemmas yn or fy:

remove ("bae") if (not -1 ("yn" "fy"));

The rule uses the keyword REMOVE, and then specifies what should be re-
moved, and under what conditions. The keyword IF is optional, but improves
readability. The condition is placed in parentheses, and can be negated (not),
or use numbers to refer to position: –n means n places to the left, n means
n places to the right. Note that lemmas must be quoted and placed in paren-
theses – this is because rules only take sets as targets, and (as noted above)
parentheses must be used to create ad hoc sets. Note also that, like the set
definitions, the rule must end with a semicolon.

We can use any tag attached to the word we want to remove; any of the follow-
ing will also work:

remove (:bay:) if (not -1 ("yn" "fy"));
remove (n) if (not -1 ("yn" "fy"));
remove (nm) if (not -1 ("yn" "fy"));

4



However, although these will work in this context, they will also apply in other
contexts, which may not be what we want – the second in particular would be
excessive, since it would remove all nouns unless they were preceded by yn
or fy! It may also be useful to generalise the rule that a nasally-mutated noun
should only be expected after yn and fy. So we will rewrite the rule to apply to
such nouns specifically, using the set we defined earlier:

remove nmnoun if (not -1 ("yn" "fy"));

3 Applying the grammar

We can now test whether the grammar works. Save the grammar file as small-
cygrm, and in a terminal run:

./cg3-autobin.pl -g smallcygrm -I cysample.txt

where cysample.txt is the formatted text we looked at earlier. I have saved both
the grammar and sample files in the same directory as the vislcg3 executables,
where I am running this command, but obviously you can choose another lo-
cation. The above command uses cg3-autobin.pl instead of vislcg3 itself –
this Perl program is a wrapper that takes the same arguments and will compile
the grammar to binary format if it has changed since last run. This enables the
ease of development of text grammars to be combined with the speed of binary
grammars for testing and use. The switch -g specifies the grammar file to use,
and the switch -I (capital i) specifies the speech file you wish to disambiguate.

The output is encouraging:

"<Mae>"
"bod" vfle 3s present :be:

Brian
"<yn>"

"yn" part stative
"yn" p :in:

"<gweithio>"
"gweithio" vinf :work:
"gweithio" vfle 3s subjunctive :work:

"<yn>"
"yn" part stative
"yn" p :in:

"<ofnadwy>"
"ofnadwy" a :terrible:

"<o>"
"o" p :from:
"o" p :of:

"<galed>"

5



"caled" a sm :hard:
"<yn>"

"yn" part stative
"yn" p :in:

"<y>"
"y" part indrel
"y" t :the:

"<swyddfa>"
"swyddfa" n f s :office:

"<$.>"

Mae has been correctly disambiguated to show derivation from the verb bod
only.

An alternative way of running the grammar is:

cat cysample.txt | ./cg3-autobin.pl -g smallcygrm

Or you can pass the entire text to the program as one string, using \n to repre-
sent newlines and \t to represent tabs:

echo -e ’"<Mae>"\n \t"bod" vfle 3s present :be:\n\t"bae" n nm m sg
\nBrian\n"<yn>"\n\t"yn" part stative\n\t"yn" p :in:\n"<gweithio>"
\n\t"gweithio" vinf :work:\n\t"gweithio" vfle 3s subjunctive
:work:\n"<yn>"\n\t"yn" part stative\n\t"yn" p :in:\n"<ofnadwy>"
\n\t"ofnadwy" a :terrible:\n"<o>"\n\t"o" p :from:\n\t"o" p :of:
\n"<galed>"\n\t"caled" a sm :hard:\n"<yn>"\n\t"yn" part stative
\n\t"yn" p :in:\n"<y>"\n\t"y" part indrel\n\t"y" t :the:
\n"<swyddfa>"\n\t"swyddfa" n f s :office:\n"<\$.>"\n’ |
./cg3-autobin.pl -g cygrammar/smallcygrm

Note that there should be no \t before the surface form, and that the \n and \t
should not be separated from (respectively) the surface form and the lemma.

4 Completing the rules

We can now write some more rules to deal with the other surface forms that
need to be disambiguated. Looking at gweithio first, the infinitive reading
should be chosen, since it occurs after yn – which in this case is a stative
marker, and not the homonymous preposition yn (in). This fact can be reflected
in this rule:

select infinitive if (-1 ("yn" part));

Note that a directly-quoted lemma must be in quotes, and both it and any of its
related tags must be in parentheses, so that they make an inline set, as noted
earlier. We are here using another keyword, SELECT, which specifies which

6



reading should be preferred, unlike REMOVE, which specifies which reading to
discard.

We can use the same information to disambiguate yn – where it occurs before
an infinitive (like gweithio) or an adjective (like caled), it is a stative. We can
therefore write another rule:

select ("yn" part) if ((1 infinitive) or (1 adjective));

If we save smallcygrm and run the grammar again, the output now looks much
better:

"<mae>"
"bod" vfle 3s present :be:

Brian
"<yn>"

"yn" part stative
"<gweithio>"

"gweithio" vinf :work:
"<yn>"

"yn" part stative
"<ofnadwy>"

"ofnadwy" a :terrible:
"<o>"

"o" p :from:
"o" p :of:

"<galed>"
"caled" a sm :hard:

"<yn>"
"yn" part stative
"yn" p :in:

"<y>"
"y" part indrel
"y" t :the:

"<swyddfa>"
"swyddfa" n f s :office:

"<$.>"

Four of the seven original ambiguous surface forms have now been resolved.

The surface form yn is still ambiguous in one instance, where it appears before
the definite article y (the). In this location it will never be a stative marker, so
let’s reflect that in another rule:

select ("yn" p) if (1 (t));

I am here using the preposition tag in the rule, but you could use any tag; for
instance,

7



select ("yn" :in:) if (1 (t));

will work just as well. For consistency, though, it is probably best to use mean-
ing tags only for cases where senses need to be distinguished (see o below).

Let’s deal with y too. It will only ever be the indirect relative particle when it
precedes an inflected verb, so this rule encapsulates that:

select ("y" t) if (not 1 inflected);

Note again the use of 1 to indicate “next word to the right” – the condition here
therefore reads “if the next word to the right is not an inflected verb”.

Only one item remains to be dealt with – the alternative senses of the preposi-
tion o (of, from). Preceding an adjective, the sense is much more likely to be
of, though that condition does not rule out from entirely. So our initial rule here
might be:

select ("o" :of:) if (1 adjective);

This will work, but leaves something to be desired – it is too broad, and may
apply when the real sense is from. It is in fact better to make the rule narrower,
so that it applies only to this context – if it applies more widely, it may create
difficulties later which will cost time and effort to debug. So we will rewrite
the rule to make it apply only in those cases where we have a prequalifier –
ofnadwy (terribly ), andros (really ), etc.

First, we add a new set definition (using quotes because we are referring to
lemmas and not tags):

list prequal = "ofnadwy" "andros";

We can, of course, add more examples as we come across them. Note that
since we are referring to lemmas, we need to surround them with quotes.

We can then rewrite the rule to refer to this new set, saying that the of sense
should be chosen when o is preceded by a prequalifier and followed by an
adjective:

select ("o" :of:) if (-1 prequal)(1 adjective);

If we run the grammar again, the output is perfect:

"<Mae>"
"bod" vfle 3s present :be:

Brian
"<yn>"

"yn" part stative

8



"<gweithio>"
"gweithio" vinf :work:

"<yn>"
"yn" part stative

"<ofnadwy>"
"ofnadwy" a :terrible:

"<o>"
"o" p :of:

"<galed>"
"caled" a sm :hard:

"<yn>"
"yn" p :in:

"<y>"
"y" t :the:

"<swyddfa>"
"swyddfa" n f s :office:

"<$.>"

The final grammar looks like this:

DELIMITERS = "<$.>";

LIST noun = n;
LIST inflected = vfle;
LIST infinitive = vinf;
LIST preposition = p;
LIST particle = part;
LIST adjective = a;
LIST conjunction = c;
LIST nmnoun = (n nm);
LIST prequal = "ofnadwy" "andros";

SECTION

remove (nm) if (not -1 ("yn" "fy"));
select infinitive if (-1 ("yn" part));
select ("yn" part) if ((1 infinitive) or (1 adjective));
select ("yn" p) if (1 (t));
select ("y" t) if (not 1 inflected);
select ("o" :of:) if (-1 prequal)(1 adjective);

5 Tracing which rules were applied

It can be useful to see what rules were applied to a particular piece of text. To
enable this, use the –trace switch:

./cg3-autobin.pl --trace -g smallcygrm -I cysample.txt

9



This gives the following output:

"<Mae>"
"bod" vfle 3s present :be:

; "bae" n nm m s :bay: REMOVE:17
Brian
"<yn>"

"yn" part stative SELECT:25
; "yn" p :in: SELECT:25
"<gweithio>"

"gweithio" vinf :work: SELECT:21
; "gweithio" vfle 3s subjunctive :work: SELECT:21
"<yn>"

"yn" part stative SELECT:25
; "yn" p :in: SELECT:25
"<ofnadwy>"

"ofnadwy" a :terrible:
"<o>"

"o" p :of: SELECT:31
; "o" p :from: SELECT:31
"<galed>"

"caled" a sm :hard:
"<yn>"

"yn" p :in: SELECT:27
; "yn" part stative SELECT:27
"<y>"

"y" t :the: SELECT:29
; "y" part indrel SELECT:29
"<swyddfa>"

"swyddfa" n f s :office:
"<$.>"

Each reading line shows the line-number of the grammar rule applied, and a
semicolon is placed at the beginning of readings that were struck out. This can
be very useful when trying to debug your grammar, and see which rules are
firing, and when.

To avoid having to refer constantly to the grammar file, you can name the rules
by adding a colon and then a chosen name after the rule’s keyword. For in-
stance, we can rewrite the mae rule to read:

remove:DeleteNmNoun nmnoun if (not -1 ("yn" "fy"));

If we add names to all the rules, and then use another switch to see only
surviving readings after the rules have been applied:

./cg3-autobin.pl --trace-no-removed -g smallcygrm -I cysample.txt

we get the following output:

10



"<Mae>"
"bod" vfle 3s present :be:

Brian
"<yn>"

"yn" part stative SELECT:25:ChooseStativeYn
"<gweithio>"

"gweithio" vinf :work: SELECT:21:ChooseInfin
"<yn>"

"yn" part stative SELECT:25:ChooseStativeYn
"<ofnadwy>"

"ofnadwy" a :terrible:
"<o>"

"o" p :of: SELECT:31:ChooseO_Of
"<galed>"

"caled" a sm :hard:
"<yn>"

"yn" p :in: SELECT:27:ChoosePrepYn
"<y>"

"y" t :the: SELECT:29:ChooseArtY
"<swyddfa>"

"swyddfa" n f s :office:
"<$.>"

Note that the –trace-no-removed switch, although providing output that is eas-
ier to read, has the drawback that REMOVE rules are not shown, because they
are attached to the reading that is removed.

6 A note on rule coverage

The rules in the CG grammar are strictly applied in the order they occur in in
the grammar file, but they are re-run multiple times. So if a rule was unable to
do anything first time around, it may be able to do something on subsequent
iterations due to later rules having cleared the way during previous iteration.
Sections are re-run until no rule fires, then the next section is added to the pool
and run until nothing fires; this is repeated until all the sections or ambiguities
are exhausted.

You may see instances where the output differs depending on the position of a
specific rule. In my (limited!) experience, this behaviour is almost always due to
the fact that the rule is not defined tightly enough. If you rewrite it more strictly,
it should have the desired effect no matter where it comes in the grammar
file. If you then find that several rules are covering the same ground, you can
combine them into one – in other words, it is probably better to go bottom-up
than top-down.

11



7 A note on parentheses

Parentheses are widely used in CG, but they have different meanings in differ-
ent contexts:

• With the keyword LIST, they create composite tags:
list nmnoun = (n nm);
will create a set of nasally-mutated nouns.

• With the keyword SET, they create on-the-fly inline sets:
set fem_noun = noun + (f);
where the f tag is converted to a set that can then be combined with the
noun set.

• In the target section of a rule (the bit you want the rule to act on), paren-
theses again create a set:
select ("yn" p) if (1 (t));
where the target is a set consisting of readings with surface form yn and
tag p.

• In the condition section of a rule (the bit after the if), they create an on-
the-fly template:
select ("yn" part) if ((1 infinitive) or (1 adjective));
See Chapter 14 of the manual for more information on this.

12


