
Swahili verb segmenter

Kevin Donnelly∗

Abstract

These notes explain how to install the Swahili verb segmenter, and give
some information on how it operates.

1 Introduction

This verb segmenter allows Swahili verbforms to be segmented for use in
parsers or taggers, or for the examination of verbform instances in corpora.
Although some segmenters already exist, they either handle only a few basic
forms, or are not available under an open license. This segmenter handles all
the one-word tenses in Swahili, and is licensed under the GPLv31 and the AG-
PLv32. The segmenter has been built and tested on GNU/Linux, but it is likely
to run also on legacy platforms like Microsoft Windows or Apple Mac OS X.

Two variants of the segmenter exist: a browser-based version,3 and a version
that can be run from the command line against a file listing verbforms to be
analysed. It would also be possible to use this latter version as part of an
application that would tag connected text.

The segmenter is currently relatively slow - working through a list of 140,000
possible verbforms drawn from Kevin Scannell’s 5m-word Crubadán4 Swahili
corpus, its average analysis rate was around 87 verbforms per minute.

2 Background

The first iteration of this segmenter was a generating conjugator like the one
I did for Welsh,5 where I would set up verbal forms and affixes in a database,
along with shaping or affixation rules, and then PHP scripts would stick all these

∗kevin@dotmon.com
1http://www.gnu.org/licenses/gpl.html
2http://www.gnu.org/licenses/agpl.html
3http://kevindonnelly.org.uk/swahili/segmenter
4http://borel.slu.edu/crubadan/
5http://eurfa.org.uk

1

together. This would have been much easier to do for a Bantu language than
for an inflected language like Welsh. Even though many of the forms would
have been semantically dubious, even if morphologically possible, that would
not have mattered, since they could just sit quietly in the database, offending
no-one. The main drawback would be that as new verbs were added to the
dictionary, the relevant forms would have to be generated, but that could be
done by a script.

However, when I took the first steps of generating forms for the current present
(-na-) tense, adding subject and object pronouns for all the classes, something
emerged that should have been obvious from the start. A first run-through
yields about 400 forms for -ambia (say,tell). And it turns out that of these
400 “possible” forms, only 15 (less than 4%) occur in the Crubadán Swahili
corpus. Once we do a rough calculation, the enormity of the problem becomes
apparent: 20 subject prefixes x 20 object prefixes x 25 tenses x 20 relatives
x (say) 2,000 verbs (initially) = 400m entries! Keeping millions of forms in a
database when they may never be used was clearly impractical.

So the segmenter now adopts an analytical approach, which takes advantage
of the fact that Swahili verbs have specific slots for each type of morphological
affix. There is some overlap, particularly where negative markers and the gen-
eral present tense are concerned, but in general the sequence is fixed. The
verbform is segmented slot by slot, and the material in each slot is tagged with
all possible affix information before moving on to the next.

For instance, in anapika (he/she is cooking), the a- is a marker for the third
person singular of Class 1. However, in apika (he/she cooks), it is a combined
marker for the class and also the general present tense. When the segmenter
meets a-, it gives it the tag [sp1-3s,sp1-3s+gen], reflecting both these possi-
bilities. Later, disambiguation rules strike out affix tags that are not applicable.
In this case, if no other tense marker is present the first tag is deleted, but if
another tense marker like -na- is found, the second tag is deleted.

This on-the-fly analysis has the advantage that you don’t need to generate the
forms beforehand and add them to the dictionary (though of course you won’t
get a verb lemma until you put an entry for it into the dictionary!). The main
disadvantage is that the analyser trusts you to put in correct forms – it will
analyse incorrect forms as best it can, which in some cases may give incorrect
results. The beginnings of a checker are therefore included, which means that
even though the analyser cannot completely rule out incorrect forms, but it will
flag the most obvious. However, this feature needs more development so that
a greater number of incorrect forms are dealt with.

Verbal extensions (where -pika (cook) can produce -pikwa, -pikia, -pikiwa, -
pikisha, -pikika, and so on) are not handled directly in the analyser. The main
reasons for this are:

• they are less productive (of the 8 or so main extensions, many verbs may
have only a few in common use);

• the morphology is more variable (often depending on the structure of the

2

verb root), which makes analysis more complicated.

Instead, they are handled by giving them separate entries in the dictionary,
with the extensions tagged there. All the analyser does is replicate these in its
analysis. So zilipelekewa (they were sent to) will be analysed as:

zi[sp10]li[past]PELEK prep pass(be sent to)[unmarked]

with the prepositional and passive extensions marked in the analysis.

The main drawback here is that the extended verbs need to be added to the
dictionary, but on the other hand in many cases the meaning of the extended
verb is some distance from that of the root verb anyway, and giving this mean-
ing in the analysis is probably more helpful than simply marking the extensions
on-the-fly. An example would be: -elea (be clear), -elewa (know), -elewana
(reach agreement), -elekea (face), -elekeza (direct).

3 Preparation

Your machine will need to have Apache2, PHP5, PostgreSQL, and (optionally)
Git already installed. The Appendix gives a summary of the relevant com-
mands for Ubuntu 9.10, and suggests how to configure your machine to use
these applications effectively – note that this is only a suggestion, and other
approaches are possible.

By the end of this process, you should have an instance of the segmenter
running on your local webserver, for interactive access, and the command-line
version will be available for work on files containing verbforms.

4 Usage

To use the browser version, go to your local installation as detailed in Section
F of the Appendix, and type in a verb you want to segment.

To use the command-line version, go to the install directory (/srv/www/seg-
menter/public html if you have followed the steps in the Appendix), open a
terminal, and enter:
php cli_segment.php

By default, this will parse a small selection of tenses in the test/verbs.txt file,
depositing the output in test/parsed verbs.txt, as well as echoing it to screen.
To segment your own list of verbs, adjust the $input line in cli segment.php
with the location of that list, or replace the contents of test/verbs.txt with your
own data.

3

5 Method

The segmenter uses the data from Beata Wójtowicz’s FreeDict Swahili dictio-
nary, so it will not specify the verb unless it is one of the 500-odd which that
dictionary already contains. As the dictionary is expanded, the segmenter will
recognise more verbs.

The approach used here takes advantage of the fact that Swahili verbs have
specific slots for each type of morphological affix. There is some overlap, par-
ticularly where negative markers and the general present tense are concerned,
but in general the sequence is fixed.

The segmentation and tagging is done in segment.php for the web version,
and cli segment.php for the command-line version. The only real differences
between these two files is that the former allows for more complex handling
of the output (display.php), and the latter refers to a verbform list instead of
taking input from a web page.

The verbform is segmented sequentially slot by slot, using the functions cut-
ter end() for suffixes and cutter() for prefixes – these and other functions are
in the file includes/fns.php. The material in each slot is then tagged with
morphological information. Table 1 shows the order in which the segmentation
takes place, and gives some examples of the affixes that occur in that slot, with
the tags the segmenter assigns to them. The relevant function used is also
listed. Tables 2 and 3 list the tags used. The tags assigned can be changed by
adjusting the text in the relevant function – for instance, if you want to change
the tag for zi- (sp10), you can adjust this line in the prefixes() function:
$text=preg_replace("/^(zi)/u", "$1[sp10]::", $text);
to read:
$text=preg_replace("/^(zi)/u", "$1[SUBJ_Class10]::", $text);
or whatever you wish. This would change the tag for zi- from sp10 to SUBJ -
Class10. Bear in mind that the disambiguation and correction rules (see below)
may also need to be adjusted accordingly.

After each such segmentation, the remainder of the verbform is checked against
the dictionary in the vbdict table, using the lookup() function, to see if it can
be interpreted as a verb stem, and whether or not it seems to have a negative
(-i) or subjunctive (-e) verb ending. After each stage, the affix information and
the verb information (if any) are written to the parsed table.

Once an entry has been found in the dictionary, no further segmentation is
done, and the information is read out of the parsed table to give the final parsed
form.

This form is then examined in order to see whether some tags are inconsistent
with others and can therefore be struck out. This is done in disambiguate.php
for the web version and disambiguate.php for the command-line version, al-
though the only real difference between the two is that the former prints out
more feedback. The disambiguation is similar to constraint grammar,6 but work-

6http://beta.visl.sdu.dk/constraint grammar.html

4

Affixes Examples Equivalent tags Function
suffixes -ye, -zo, -pi,

-je
endrel1, endrel10, int-
where, int-how

suffixes()

negative ha- ha- initneg ineg()

subject pronouns, neg-
atives, infinitive, habit-
ual

ni-, si-, ku-,
hu-

sp1-1s, neg+sp1-1s,
infin15, hab

prefixes()

tense and mood mark-
ers and negative parti-
cles

-li-, -sipo-,
-ki-

past, part-neg, cons tenses()

relatives -ye-, -zo- rel1, rel10 relatives()

objects -tu-, -zi-, -ji- op2-1p, op10, refl objects()

Table 1: Segmentation slots

Tenses, moods, aspects Verbal extensions
comp completive -sha-, -isha-,

-kwisha-
assoc associative extension

-an-
conc concessional -nga- caus causative extension -iz-,

-ez-, -ish-, -esh-, -y-
cond conditional -nge- cont continuative extension -t-
cons consecutive -ka- conv conversive extension -u-,

-o-
curr current present -na- inc inceptive extension -p-
fut future -ta- pass passive extension -w-
hab habitual hu- pos positional extension -m-
hypo hypothetical -japo- prep prepositional extension

-i-, -e-
imp imperative -e stat stative extension -ik-,

-ek-
gen general present -a-
part participial -ki-
past past -li-
perf perfective -me-
subj subjunctive -e
supp suppositional -ngali-

Table 2: Tense and extension tags

5

Pronouns Miscellaneous
sp subject pronoun - num-

bers refer to the class
unmarked unmarked (default) vowel

ending
op object pronoun - num-

bers refer to the class
endrel end relative

1s first person singular initneg initial negative
2s second person singular int-how interrogative how -je?
3s third person singular int-what interrogative what -ni?
1p first person plural int-where interrogative where -pi?
2p second person plural ms monosyllabic prop
3p third person plural neg negative
refl reflexive pl plural

redup reduplicated
rel relative

Table 3: Other tags

ing within the word boundary rather than across it. There are in fact arguments
for using CG for this purpose, but on balance I decided that adding an addi-
tional dependency to the segmenter was not justified at present - perhaps in
the future!

The existing disambiguation rules need to be extended, since there are a few
areas where mutually exclusive tags are not resolved.

A related area is error-checking. As noted earlier, initial work has been done
on this, with suggestions to the user as to how to correct a few obvious errors,
but this needs to be greatly extended. One of the problems here is where to
draw the line – there are in fact an infinite number of errors that can be made,
and since the segmenter works by ad hoc analysis, it has no list of definitively
correct forms. Progressive refinement of the error-checking is therefore a long-
term project.

6 Future development

It would be interesting to port this segmenter to other Bantu languages like
Shona or Zulu. Even though tone is not marked in the orthography of many
Bantu languages, the segmenter should ideally deal with tonal distinctions as
well.

6

Appendix:
Configuring Ubuntu 9.10

These instructions should also work on Ubuntu 10.04. In either case, they
assume a properly-working desktop with network access.

A Install relevant software

Install Apache (webserver), PHP5 (scripting system), and PostgreSQL (database),
phpPgAdmin (browser interface to PostgreSQL), and (optionally) Git (version-
ing system) and pgAdminIII (desktop interface to PostgreSQL):

sudo apt-get install git-core, apache2, apache2-utils, libapache2-mod-php5,
php5, php-pear, php5-xcache, php5-pgsql, postgresql, phppgadmin, pgadmin3

B Configure Apache

B.1 Configure a virtual host

sudo nano /etc/apache2/sites-available/segmenter

Place the following in the file:

<VirtualHost *:80>
ServerName segmenter
DocumentRoot /srv/www/segmenter/public_html/
</VirtualHost>

B.2 Tell the PC about the new virtual host

sudo nano /etc/hosts

Add the following line:

127.0.0.1 segmenter

B.3 Enable the site and restart Apache

sudo a2ensite segmenter

7

sudo /etc/init.d/apache2 restart

B.4 Give your normal user access to the /srv directory

sudo chown -R myuser.myuser /srv

B.5 Create a directory structure for the virtual host you set
up earlier

mkdir -p /srv/www/segmenter/public html

B.6 Create a front-page for the virtual host

cd /srv/www/segmenter/public html

nano index.html

Enter the following:

<html>
<head>
<title>Segmenter</title>
</head>
<body>
Front page for segmenter virtual host.
</body>
</html>

If you now enter segmenter in the address bar of your browser you should see
a page reading Front page for segmenter virtual host.

C Configure PostgreSQL

C.1 Set PostgreSQL to use passwords

sudo nano /etc/postgresql/8.4/main/pg hba.conf

Change the line:

local all all ident

to:

8

local all all md5

C.2 Create a database user

sudo -i

su - postgresql

createuser -P mypguser

Enter a password (twice), and enter y at the superuser question.

Enter exit twice to return to your normal (desktop) user.

You will have to use the username/password you have just entered to replace
the default kevin/kevindbs near the top of the .php scripts in the download.

D Download the segmenter

In a working directory of your choice, run:
git clone http://thinkopen.co.uk/git/segmenter
The files will be downloaded into a segmenter folder in your working directory.

If you have chosen not to install Git, you can instead download the files by going
to http://thinkopen.co.uk/git/, clicking on segmenter, then on tree, and finally
on snapshot. This will download a tarball containing the files. Uncompress this
to create a segmenter folder in your working directory.

Copy all the files in the segmenter folder to your new web directory at /srv/
www/segmenter/public_html. Delete the index.html file you created earlier
at B.6.

E Initialise the database

E.1 Create the database

Go the the dbs folder and create a new database:

createdb -U mypguser swahili

using the PostgreSQL user you created earlier at C.2. Enter your PostgreSQL
password when prompted.

9

E.2 Import the tables

Log in to psql as your user:

psql -U mypguser swahili

At the swahili=# prompt, enter:

\i vbdict.sql

\i parsed.sql

Enter \q to exit psql.

E.3 Configure the database connection

Open a text editor, and replace the username and password in the file swahili/config.php
with the PostgreSQL username and password you created earlier at C.2.

Move the configuration details out of the web tree:

sudo mv siarad /opt

F Test access

Open a web browser, and enter segmenter on the location line. You should
see the front page of the segmenter.

If this does not work, contact me at kevin@dotmon.com.

10

