
Autoglosser2
A glosser/tagger for Welsh

Kevin Donnelly

2016-18
(This version compiled 3 February 2018)

autoglosser.org.uk

Autoglosser2 is free software under the GPLv3 or later, and the AGPL.
All trademarks belong to their respective owners.

The image is a page from the Black Book of Carmarthen, mid-13thC.
Sourced from the National Library of Wales under a CC0 license.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 The Bangor Autoglosser . 1
1.3 Autoglosser2 . 1
1.4 Getting started . 2
1.5 Contributing . 2

2 The Autoglosser2 web interface 3
2.1 Introduction . 3
2.2 Output options . 3
2.2.1 Default gloss output . 3
2.2.2 Vertical gloss output . 4
2.2.3 Horizontal tag output . 5
2.2.4 Vertical tag output . 5

3 The Autoglosser2 pipeline 7
3.1 Introduction . 7
3.2 File format and location . 7
3.3 Import the text file into separate utterances . 7
3.4 Tokenise the utterances . 8
3.5 Generate a constraint grammar cohorts file . 9
3.6 Apply the constraint grammar rules . 10
3.7 Gather part-of-speech data . 11
3.8 Generate the glosses . 12
3.9 Create pdf output . 13
3.10 Create text output . 14
3.11 Glossing speed . 14
3.12 Running the entire pipeline . 15
3.13 Glossing a directory of files . 15

4 Constraint grammar 16
4.1 Introduction . 16
4.2 Key attributes of CG-3 . 16
4.3 Constraint grammar rules . 17
4.3.1 Preamble . 17
4.3.2 Rule sections . 17
4.3.3 Rule application . 17
4.3.4 Rule targets . 17
4.3.5 Rule contexts . 18
4.4 Some rule examples . 18
4.4.1 SELECT rules . 18
4.4.2 REMOVE rules . 19
4.4.3 SUBSTITUTE rules . 20
4.5 Contributing . 20

5 Eurfa 21
5.1 Introduction . 21
5.2 Structure . 21

i

CONTENTS ii

5.3 Content . 23
5.4 Contributing . 23

6 Customising Autoglosser2 24
6.1 Introduction . 24
6.2 Web interface . 24
6.3 Import . 24
6.4 Tokenisation . 24
6.5 Cohort generation . 25
6.6 Gloss generation . 25
6.7 Pdf output . 25
6.8 Txt output . 26
6.9 Contributing . 26

A Installing Autoglosser2 29
A/1 Introduction . 29
A/2 Conventions . 29
A/3 Download Autoglosser2 . 29
A/4 Download Eurfa . 30
A/5 Install fonts . 30
A/6 Install Constraint Grammar 3 . 30
A/7 Install Apache2 . 31
A/8 Configure the web interface . 31
A/9 Install PHP . 31
A/10 Install PostgreSQL . 32
A/11 Configure the database connection . 32
A/12 Install phpPgAdmin . 33
A/13 Install SQL Workbench/J . 33
A/14 Configure SQL Workbench/J . 34
A/15 Install LaTeX . 34

B Autoglosser2 gloss components 35
C CorCenCC tags 37

List of Figures

2.1 Default web-interface output – horizontal glosses . 3
2.2 Default web-interface output file – horizontal glosses. 4
2.3 Vertical glosses output. 4
2.4 Vertical glosses output file. 5
2.5 Horizontal tags output. 5
2.6 Horizontal tags output file. 5
2.7 Vertical tags output. 6
2.8 Vertical tags output file. 6

3.1 A sample constraint grammar cohorts file. 9
3.2 The results of applying constraint grammar rules to Figure 3.1. 10
3.3 Tracing the application of constraint grammar rules to Figure 3.1. 11
3.4 Default pdf output. 13
3.5 Options: corcencc+notrans. 14
3.6 Options: both+colour+nopunc. 14

iii

List of Tables

3.1 The _utterances table. 8
3.2 The _words table. 9
3.3 Part of the _cgfinished table, reflecting the application of the constraint grammar rules. 12
3.4 Part of the _holding table, showing generated glosses. 13
3.5 Duration (in seconds) at the various stages of the glossing pipeline. 14

5.1 Eurfa structure. 21

iv

Chapter 1

Introduction

1.1 Introduction

Being able to specify the part of speech of each word in running text (glossing or tagging) is the
foundation for other natural language processing (NLP) tasks (examining word frequency or collocation,
syntax analysis, machine translation, etc).
Autoglosser2 is a glosser/tagger for Welsh.1 It is licensed under version 3 (or greater) of the Free

Software Foundation’s General Public License.2 This means that, apart from costing nothing to use, it
can be adapted and extended as required by the user, subject to the same license being used for any
new version thus created and distributed.
Welsh is the most widely-spoken Celtic language, currently used by almost 20% (562,000)3 of the

population in Wales on a daily basis. Since the 1993Welsh Language Act, it has been an official language
in Wales, with public sector bodies required to give it equal status with English. Modern Welsh, due to
its long contact with English, contains many English loans (conversation will usually include substantial
amounts of code-switching), and its syntax has converged to some extent with English (e.g. periphrastic
tenses have largely supplanted the native inflected tenses).

1.2 The Bangor Autoglosser

Autoglosser2 is a heavily revised version of the Bangor Autoglosser,4 which was developed for Bangor
University’s then ESRC Centre for Research on Bilingualism in Theory and Practice in the period 2009-
2011 (Donnelly et al., 2011; Donnelly and Deuchar, 2011a,b). That software, the first-ever dedicated
Welsh glosser, was used to provide automatic glossing, based roughly on the proposals in Comrie et al.
(2008), for the Centre’s Welsh, Spanish and English bilingual conversational corpora, the results of
which are available under a GPL license at the BangorTalk site.5

A detailed account of the development and research use so far of one of those corpora, the half-
million word Welsh-English Siarad corpus, is available in Deuchar et al. (2018). Carter et al. (2017) and
Carter et al. (2016) discuss the implications of using software such as the Bangor Autoglosser, while
Deuchar et al. (2016) and Broersma et al. (2018) use data from the Autoglosser to draw significant new
conclusions about the use of code-switching in Welsh.

1.3 Autoglosser2

A large part of the functionality of the Bangor Autoglosser was centred around handling conver-
sational language which included code-switches (using English words and phrases in the Welsh, or
switching entirely to English for some utterances). Autoglosser2, on the other hand, is aimed at writ-
ten rather than spoken Welsh text, and has been refactored to tidy the code and make it far faster (it
1Proof-of-concept versions also exist for Gàidhlig (Scots Gaelic) and Māori.
2gnu.org/licenses/gpl.html. Components distributed with Autoglosser2 (HTML KickStart, Prototype, Jquery) have their

own licenses.
3statswales.gov.wales/Catalogue/Welsh-Language/WelshSpeakers-by-LocalAuthority-Gender-DetailedAgeGroups-2011Census
4github.com/donnekgit/autoglosser
5bangortalk.org.uk

1

CHAPTER 1. INTRODUCTION 2

now glosses at a rate of 22,000 words/minute instead of 1,000). Like its predecessor, Autoglosser2 is
rule-based – it uses constraint grammar to decide on the appropriate gloss or tag (Chapter 4). In this
respect it differs from taggers which apply statistical methods to decide on the appropriate tag. The
software again uses the Eurfa digital dictionary (Donnelly, 2016), the largest Welsh dictionary under a
GPL license (Chapter 5).
Eurfa and some of the principles underlying Autoglosser2 (e.g. the use of constraint grammar) are

also used in the CyTag software produced by the Corpus Cenedlaethol Cymraeg Cyfoes (CorCenCC – the
National Corpus of Contemporary Welsh) project,6 led by Cardiff University, although that tagger has
been specially developed to handle the needs of the CorCenCC corpus. As well as the gloss format used
by the Bangor ESRC corpora (Appendix B), Autoglosser2 is also able to output tags in CorCenCC format
(Appendix C) – see Sections 2.2.3, 2.2.4, 3.9 and 3.10.

1.4 Getting started

Detailed instructions for installing Autoglosser2 and the other software it requires are in Appendix A.
Autoglosser2 has been developed on Ubuntu Linux 14.04, and tested on Ubuntu Linux 16.04, so it

should run well on current versions of any Linux distro (though the instructions in Appendix A may need
to be adjusted to take account of that distro’s packaging approach). It may also run on legacy platforms
like Microsoft Windows or Apple OSX, but is likely to need some tweaking – one way around this is to
run Linux as a virtual machine on those platforms.7

A web interface is available at the Autoglosser2 website,8 and included in the download (see Chap-
ter 2), but this is intended only for short stretches of text, and for more demanding glossing (e.g. glossing
a long file, or a directory of files) it will be best to use the command-line glosser (see Chapter 3), which
is also likely to fit better into existing language processing workflows.

1.5 Contributing

Since Autoglosser2 is free software, you are welcome to change and extend it to suit your own
requirements. Chapter 6 looks at areas where you might want to begin customising the output. I would
be happy to take any suggestions on board – fork the repo, make your changes, and then submit a pull
request, or send me your code directly (kevin@dotmon.com).

6corcencc.org
7virtualbox.org
8autoglosser.org.uk

Chapter 2

The Autoglosser2 web interface

2.1 Introduction

The quickest way to explore the Autoglosser2 is to use the web interface. If you have large amounts
of text to convert, or you wish to integrate the glosser into a language processing workflow, you should
use the command-line glosser – see Chapter 3. However, the web interface can be useful for testing
shorter stretches of text when you wish to develop or fine-tune constraint grammar rules (Chapter 4) or
want to check whether particular words are in Eurfa (Chapter 5).
An online instance of the web interface is available at autoglosser.org.uk. If you have followed

the installation instructions in Appendix A/8, this interface will also be available to you on your own
machine at the address http://autoglosser2. To use the interface, type or paste text into the input box.1
Input is truncated to 300 characters, but if your text is longer than this you can tag it in chunks (see
also Section 6.2).
Once your Welsh text is in the input box, press the button marked Gloss it!. This will segment the

text into sentences, split each sentence into words, and begin the process of glossing (described in detail
in Chapter 3). The output of the glossing process will be shown on the right-hand side of the browser
window.

2.2 Output options

2.2.1 Default gloss output

Ticking the radio button Glosses, horizontal layout gives the default output, consisting of Siarad-type
glosses (English lemma followed by POS tags) in a tiered format. For example, droedio would be tagged
tread.V.INFIN+sm, meaning that it is a verbal infinitive (sometimes called a verbal noun), bearing soft
mutation, and corresponding to the English lemma “tread”. A full list of gloss components is given in
Appendix A.

Figure 2.1: Default web-interface output – horizontal glosses
1Note that cutting and pasting from pdfs can often lead to an issue where the accent is pasted in as a separate glyph, and

the “accented” letter, although it looks OK, will not be found on lookup. If you are find that accented words are being tagged as
unknown, try deleting the “accented” letter from the input and typing it in manually.

3

CHAPTER 2. THE AUTOGLOSSER2 WEB INTERFACE 4

Sample output (meaning “Lois is making a cake”) is given in Figure 2.1. Each input sentence is
numbered, and below it in square brackets there is a gist (Wenglish) translation, which consists simply
of a concatenation of the English lemmas for each word in the sentence. Below that there are two tiers
giving the words in the text (with its location in the sentence marked via a superscript numeral), with
the gloss below each.
Although not depicted here, in this and the other layouts any words that are undisambiguated (i.e.

more than one part of speech could apply to them) or words that are unknown to Eurfa (i.e. need to be
added to the dictionary) are marked in red.
A text file (ending in _txtoutput.txt) is also generated in the background, which may be useful for

further processing. To access this, right-click the link at the top of the output area, and save the file.
Note that if you click the link the file will open in a new browser window, but depending on the cache
settings in your browser, the file that opens may not be the most recently-generated version, so right-
clicking and saving is the best way to access the newest file.
The default output file is in a horizontal format, with four lines for each sentence: the (numbered)

sentence, the gist translation, the tagged words, and an empty delimiter line – see Figure 2.2. Each
tagged word consists of a number in braces giving the sentence and the word’s location in the sentence,
the word, a hash symbol (#), and a gloss.
(1) Mae Lois yn gwneud cacen.
[is Lois make cake .]
{1,1}Mae#is.V.3S.PRES {1,2}Lois#Lois.NAME {1,3}yn#PRT {1,4}gwneud#make.V.INFIN

{1,5}cacen#cake.N.F.SG {1,6}.#PUNC.FS

Figure 2.2: Default web-interface output file – horizontal glosses.

If there is no need to tag punctuation, this can be switched off in the web interface by ticking the
box In glosses, don’t tag punctuation. Both web and file output will then filter out punctuation glosses,
leaving only the punctuation mark itself.

2.2.2 Vertical gloss output

Ticking the radio button Glosses, vertical layout gives a variation on the default where the tagged
words each appear on their own line, with the word preceded by sentence and location information in
brackets, and followed by a hash and a gloss, again with an empty delimiter line between each sentence
– see Figure 2.3.

Figure 2.3: Vertical glosses output.

The equivalent output file follows the same pattern, except that the location information is in braces

CHAPTER 2. THE AUTOGLOSSER2 WEB INTERFACE 5

– see Figure 2.4. As with the default layout, punctuation glossing can be switched off by ticking the box
In glosses, don’t tag punctuation.
(1) Mae Lois yn gwneud cacen.
[is Lois make cake .]
{1,1} Mae#is.V.3S.PRES
{1,2} Lois#Lois.NAME
{1,3} yn#PRT
{1,4} gwneud#make.V.INFIN
{1,5} cacen#cake.N.F.SG
{1,6} .#PUNC.FS

Figure 2.4: Vertical glosses output file.

2.2.3 Horizontal tag output

The Eurfa dictionary also includes CorCenCC-type tags for each entry, so ticking the radio button
CorCenCC tags, horizontal layout will print CorCenCC tags instead of Siarad-type glosses for each word
in the sentence. A full list of CorCenCC tags is given in Appendix C.
The web output (see Figure 2.5) each input sentence is numbered, with a gist translation below it in

square brackets. Below that, each word in the sentence is preceded by its location, and followed by a
hash and a tag.

Figure 2.5: Horizontal tags output.

The equivalent output file is in a similar horizontal format, with four lines for each sentence: the
(numbered) sentence, the gist translation, the tagged words, and an empty delimiter line – see Figure 2.6.
Each tagged word consists of a number in braces giving the sentence and the word’s location in the
sentence, the word, a hash, and a tag.
(1) Mae Lois yn gwneud cacen.
[is Lois make cake .]
{1,1}Mae#Bpres3u {1,2}Lois#Ep {1,3}yn#Utra {1,4}gwneud#Be {1,5}cacen#Ebll {1,6}.#Atdt

Figure 2.6: Horizontal tags output file.

2.2.4 Vertical tag output

Ticking the radio button CorCenCC tags, vertical layout produces a vertical layout similar to the
vertical gloss layout, but using CorCenCC tags. The tagged words each appear on their own line, with
the word preceded by sentence and location information in brackets, and followed by a hash and a gloss,
again with an empty delimiter line between each sentence – see Figure 2.7.

CHAPTER 2. THE AUTOGLOSSER2 WEB INTERFACE 6

Figure 2.7: Vertical tags output.

The equivalent output file follows the same pattern, except that the location information is in braces
– see Figure 2.8.
(1) Mae Lois yn gwneud cacen.
[is Lois make cake .]
{1,1} Mae#Bpres3u
{1,2} Lois#Ep
{1,3} yn#Utra
{1,4} gwneud#Be
{1,5} cacen#Ebll
{1,6} .#Atdt

Figure 2.8: Vertical tags output file.

Chapter 3

The Autoglosser2 pipeline

3.1 Introduction

This chapter explains the Autoglosser2 pipeline – a series of scripts that are run in succession to
allow the import and glossing of your text. The examples will assume that you want to gloss or tag text
in a file called atext.txt – wherever you see this, you can replace it with the name of your own file.
The commands here should be run in the command-line interface that is presented when you open

a terminal (e.g. Konsole in KDE). They should be run from the top-level directory of Autoglosser2.

3.2 File format and location

The file you want to gloss or tag should be in plain text format – in other words, word-processor
documents need to be converted to text format before import. The UTF-8 encoding is assumed, and if
your file is in a legacy encoding such as ISO-8859 or variants, or Windows-1252, it may be wise to
convert them first in case you get unexpected results during the glossing process.
For tidiness, you can place your input file in the inputs folder in the Autoglosser2 directory, but this

is not essential – on first import you just need to give the full path to the input file’s location. It is a good
idea to keep the input filename lower-case and all-one-word. In contrast to Microsoft Windows, Llinux
considers files with capitalised names as different files from the lower-case equivalent, and filenames
containing spaces may not be handled as anticipated. If you need to include multiple words in the
filename, link them with an underscore.
Note that where database tables are created, they will be created from scratch with each invocation

of the script, with the old table being deleted. If for some reason you need to retain the old table (which
is unlikely), you should back it up before running the script.

3.3 Import the text file into separate utterances

To import the file, run:
php import.php inputs/atext.txt1

This will create a database table of the same name as your file, but ending in _utterances – in this
case, atext_utterances – with each record in the table containing an utterance (which encompasses
sentences, headings, list items, etc.) from your file.
The table contains four fields:
utterance_id A numeric identifier for the entry.
surface The Welsh text of the sentence.
translation An existing or generated translation for the sentence – left empty on initial import.
filename The name of the file containing the sentences – in this case, atext.
1If your input file is in some other location, just give its full path before the filename.

7

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 8

Using the example from Chapter 2, if the contents of atext.txt were Mae Lois yn gwneud cacen.
(“Lois is making a cake.”), the resulting contents of the _utterances table after import would be as
shown in Table 3.1. As with all the tables produced by Autoglosser2, this table can be inspected using
phpPGAdmin (Appendix A/12), SQLWorkbench/J (Appendix A/13), or any other database GUI.

utterance_id surface translation filename
1 Mae Lois yn gwneud cacen. atext

Table 3.1: The _utterances table.

The glossing process stores all output material (apart from the database tables) in the directory
outputs, inside a sub-directory of the same name as your file. During import, two files are created
in the background, and are therefore to be found in the directory outputs/atext. The first (atext_
sentencised.txt) is a log file which holds the text at various stages in the import process – this allows
the segmentation procedure to be reviewed and adjusted if necessary. The second (atext_utterances.
tsv) contains the output of the segmentation, with the data items separated by tabs – the contents of this
file are copied directly into the fields of the _utterances table. The tab-separated value (.tsv) format is
used so that the file can be opened directly in a spreadsheet if desired, as well as being opened in a text
editor.

3.4 Tokenise the utterances

To tokenise each utterance, run:
php wordify.php atext

Note that you only have to give the name of your file (without the .txt ending) – the script will use
this to locate the _utterances table, read each utterance out of that, and split it into words (which
encompasses punctuation, numbers, etc.).
This will create a database table of the same name as your file, but ending in _words – in this case,

atext_words – with each record in the table containing a word from the file, ordered in terms of the
sentence it occurs in.
The table contains 11 fields:
word_id A numeric identifier for the entry.
utterance_id The sentence in which the word occurs.
location The placement of the word in the sentence.
surface The Welsh word as it occurs in the sentence – the surface form.
lemma The base form of the Welsh word - the underlying form – left empty on initial import.
enlemma The base form of the English word corresponding to the Welsh word – left empty on initial
import.

langid An identifier for the language of the word – left empty on initial import. This was an im-
portant element in Autoglosser1, which was designed to tag multiple languages at once, but is
of less importance in Autoglosser2. The identifier uses the ISO-639-2 language codes,2 or some
other three-letter abbreviation (e.g. han, cyr – see below). Where the language is non-identifiable
(e.g. in the case of punctuation), the identifier is replaced with three dashes.

auto The autogloss for the word – left empty on initial import.
corcencc The CorCenCC tag for the word – left empty on initial import.
filename The name of the file containing the sentences – in this case, atext.
semtag The semantic domain of the word – left empty on initial import. Not currently used in
Autoglosser2, but retained in case of future development.

2loc.gov/standards/iso639-2/php/code_list.php

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 9

Table 3.2 shows the contents of the _words table after tokenisation. In this and subsequent tables,
the fieldname utterance_id is abbreviated to uid, and location to loc.

word_id uid loc surface lemma enlemma auto corcencc filename
1 1 1 Mae atext
2 1 2 Lois atext
3 1 3 yn atext
4 1 4 gwneud atext
5 1 5 cacen atext
6 1 6 . atext

Table 3.2: The _words table.

During tokenisation, two files are created in the background, and stored in the directory outputs/
atext. The first (text_wordified.txt) is a log file which holds the text at various stages in the tokeni-
sation process – this allows the splitting procedure to be reviewed and adjusted if necessary. The second
(atext_words.tsv) contains the output of the tokenisation, with the data items separated by tabs – the
contents of this file are copied directly into the fields of the _words table.

3.5 Generate a constraint grammar cohorts file

Autoglosser2 uses constraint grammar (Chapter 4) to select the correct tag from multiple possible
tags. This is done by applying the rules in a constraint grammar to a list (“cohort”) of the possible tags
available for a particular word (“readings”).
To generate a cohorts file in a format that can be ingested by the constraint grammar parser, run:
php cohorts.php atext

Continuing with the above example, the resulting output, stored in the file outputs/atext/atext_
cg.txt, would be as in Figure 3.1.

"<Mae>" atext,1,1
"bod" [cym] v 3s pres :be: <B pres 3 u> + cap [59494]
"bae" [cym] n m sg :bay: <E g u> + nm + cap [196982]

"<Lois>" atext,1,2
"Lois" [---] name :Lois: <E p> + cap

"<yn>" atext,1,3
"yn" [cym] prt :: <U tra> [200654]
"yn" [cym] prep :in: <Ar sym> [204430]
"gan" [cym] prep :with: <Ar sym> + sm [196964]

"<gwneud>" atext,1,4
"gwneud" [cym] v infin :do: <Be> [202152]

"<cacen>" atext,1,5
"cacen" [cym] n f sg :cake: <E b ll> [209544]

"<.>" atext,1,6
"." [---] punc fullstop :.: <Atd t> [214098]

Figure 3.1: A sample constraint grammar cohorts file.

The words in the sentence appear in quotes and angle brackets, followed by the filename and location
information. Indented lines show relevant entries from Eurfa: the lemma in quotes, then the language
identifier, then the part-of-speech information, then the English lemma, then the CorCenCC tag in angle
brackets, then additional attributes such as capitalisation or mutation, and finally the number of the
entry in Eurfa.
To create the _cg file, cohorts.php reads each word out of the _words table, and calls another file

(lookups/cym_lookup.php) to look up that word in the Eurfa digital dictionary. The lookup covers

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 10

various aspects such as:
de-pluralisation e.g. breichiau→ braich (“arms”), canghennau→ cangen (“branches”)
de-capitalisation e.g. Dirprwy→ dirprwy (“deputy”), Cyd-Destunoli→ cyd-destunoli (“contextualisa-
tion“)

de-mutation e.g. blant → plant (“children”), pharti→ party (“party”)
acronym resolution e.g. B. B. C. = B.B.C. = BBC
English recognition words that appear to be English will be marked as such, though no part of
speech information will be given

glyph recognition e.g. 计划生育委员会 (jīhuàshēngyù wěiyuánhuì – “family planning committee”)
will be identified as Han glyphs, Российская Федерация (rossiyskaya federatsiya – “Russian Fed-
eration”) will be identified as Cyrillic glyphs

basic URL recognition for addresses ending in .com, .co.uk, .org, .org.uk, ac.uk
number recognition e.g. 1980au (decade), 137 (number), 18.12 (decimal), VII (roman numeral)
names any capitalised words that still have no entry in Eurfa are tentatively marked as names
During cohort generation, two files are created in the background alongside the main _cg file, and

stored in the directory outputs/atext. They are intended to help the process of adding new items
to Eurfa. The first (atext_names.txt) lists in alphabetical order the capitalised words that have been
guessed as names, and the second (atext_unknowns.txt) lists in alphabetical order any non-capitalised
words for which an entry has not been found in Eurfa. Both are often a useful way to pick up typos or
misspellings in the original input text.

3.6 Apply the constraint grammar rules

To apply the constraint grammar to the generated cohorts file, run:
php apply_cg.php atext

The constraint grammar rules will prune the cohort of possible options for each word down to (hope-
fully!) a single correct option. The results will be stored in the file outputs/atext/atext_cg_applied.
txt, and Figure 3.2 shows the sample text in Figure 3.1 after the constraint grammar rules have been
applied.

"<Mae>" atext,1,1
"bod" [cym] v 3s pres :is: <B pres 3 u> + cap [59494]

"<Lois>" atext,1,2
"Lois" [---] name :Lois: <E p> + cap

"<yn>" atext,1,3
"yn" [cym] prt :: <U tra> [200654]

"<gwneud>" atext,1,4
"gwneud" [cym] v infin :make: <Be> [202152]

"<cacen>" atext,1,5
"cacen" [cym] n f sg :cake: <E b ll> [209544]

"<.>" atext,1,6
"." [---] punc fullstop :.: <Atd t> [214098]

Figure 3.2: The results of applying constraint grammar rules to Figure 3.1.

By default, two grammars are applied. The first (grammar/cym_grammar.cg3) is a general grammar,
and the second (grammar/cym_multiword.cg3) marks words which are part of a multiword expression,
noting their position in the multiword (left, middle, right). If you do not wish the multiword grammar
to be applied, you can pass the option raw into apply_cg.php:

php apply_cg.php atext raw

If you are refining rules, it is helpful to be able to compare “before” and “after”. To enable this, apply_
cg.php produces two other files giving the output from previous applications of the rules. The first

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 11

(atext_cg_applied_old.txt) contains the output from the last application, and the second (atext_
cg_applied_old_old.txt) contains the output from the application before that. These files can then be
compared in a difference viewer such as Meld3 in order to check whether the rule changes have affected
the desired word, and also whether there are any unexpected regressions relating to other words.
To investigate how rules are interacting with one another, you can also run:
php trace.php atext

This will produce a file – outputs/atext/atext_cg_traced.txt – which contains the results of the
rule application in a format which shows all the cohort options Figure 3.1, but marked to show what
rules were applied to arrive at Figure 3.2. The type of rule that has been applied is given at the end of
the option, along with the line number of that rule in the grammar file, and the options pruned as a
result of this are marked with a semicolon (;) at the beginning of the line – see Figure 3.3.

"<Mae>" atext,1,1
"bod" [cym] v 3s pres :is: <B pres 3 u> + cap [59494] SUBSTITUTE:736

; "bae" [cym] n m sg :bay: <E g u> + nm + cap [196982] REMOVE:155
"<Lois>" atext,1,2

"Lois" [---] name :Lois: <E p> + cap
"<yn>" atext,1,3

"yn" [cym] prt :: <U tra> [200654] SELECT:214
; "gan" [cym] prep :with: <Ar sym> + sm [196964] REMOVE:138
; "yn" [cym] prep :in: <Ar sym> [204430] SELECT:214
"<gwneud>" atext,1,4

"gwneud" [cym] v infin :make: <Be> [202152] SUBSTITUTE:629
"<cacen>" atext,1,5

"cacen" [cym] n f sg :cake: <E b ll> [209544]
"<.>" atext,1,6

"." [---] punc fullstop :.: <Atd t> [214098]

Figure 3.3: Tracing the application of constraint grammar rules to Figure 3.1.

3.7 Gather part-of-speech data

Once the constraint grammar rules have been applied to the text so that (ideally) a single option
has been selected for each word, the part-of-speech data for each word as given in the _cg.txt file is
imported into a database table by running:

php cgfinished.php atext

This creates a database table of the same name as your file, but ending in _cgfinished – in this case,
atext_cgfinished.
The table contains 15 fields:
id A numeric identifier for the entry.
filename The name of the file containing the sentences – in this case, atext.
utterance_id The sentence in which the word occurs.
location The placement of the word in the sentence.
surface The Welsh word as it occurs in the sentence – the surface form.
langid An identifier for the language of the word.
lemma The base form of the Welsh word - the underlying form.
enlemma The base form of the English word corresponding to the Welsh word.
auto The autogloss for the word. This consists of the POS data for each word, concatenated with a
full stop.

dictid The number of the entry in Eurfa.
corcencc The CorCenCC tag for the word.
3meldmerge.org

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 12

mutation The type of mutation, if any, applied to the word.
cap Whether the word is capitalised in the text.
adjust Whether the word is part of a multiword expression, and if so, its location (left, middle, right)
in the multiword. This field will not be used if you have elected not to apply the cym_multiword.
cg3 grammar – see Section 3.6.

semtag The semantic domain of the word.
Table 3.3 shows the main fields in the table once the data for the sample text has been imported.

id uid loc surface langid lemma enlemma auto corcencc cap
1 1 1 Mae cym bod is v.3s.pres Bpres3u cap
2 1 2 Lois — Lois Lois name Ep cap
3 1 3 yn cym yn prt Utra
4 1 4 gwneud cym gwneud make v.infin Be
5 1 5 cacen cym cacen cake n.f.sg Ebll
6 1 6 . — . . punc.fullstop Atdt

Table 3.3: Part of the _cgfinished table, reflecting the application of the constraint grammar rules.

During part-of-speech data collection, a _cgfinished.tsv file is created in the background, and
stored in the directory outputs/atext. This contains the generation output, with the data items sepa-
rated by tabs – the contents of this file are copied directly into the fields of the _cgfinished table.

3.8 Generate the glosses

To generate the glosses, the tags need to be uppercased and attached to the English lemma (strictly
speaking, this step is unnecessary for the CorCenCC tags, because they are already in final form and do
not need to have the lemma attached). But more importantly, if the word has not been disambiguated
(that is, applying the constraint grammar rules have left more than one option for the word), the glosses
and tags need to be combined so that they can highlight areas where the constraint grammar rules need
to be refined.
To generate the glosses and any undisambiguated combinations, run:
php join_tags.php atext

This creates a database table of the same name as your file, but ending in _holding – in this case,
atext_holding.
The table contains 10 fields:
id A numeric identifier for the entry.
filename The name of the file containing the sentences – in this case, atext.
utterance_id The sentence in which the word occurs.
location The placement of the word in the sentence.
lemma The base form of the Welsh word - the underlying form.
enlemma The base form of the English word corresponding to the Welsh word.
langid An identifier for the language of the word.
auto The autogloss for the word. This consists of the POS data for each word, concatenated with a
full stop.

corcencc The CorCenCC tag for the word.
semtag The semantic domain of the word.
Table 3.4 shows the main fields in the table once the glosses have been generated. The generation

process also includes additional tweaking of the data: for instance, mutation marking is attached to

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 13

the gloss; capitalisation is restored to nouns, adjectives, and infinitives; glosses for secondary words in
multiword expressions are replaced with an arrow pointing towards the primary word. etc.

id uid loc lemma enlemma langid auto corcencc
1 1 1 bod is cym is.V.3S.PRES Bpres3u
2 1 2 Lois Lois — Lois.NAME Ep
3 1 3 yn cym PRT Utra
4 1 4 gwneud make cym make.V.INFIN Be
5 1 5 cacen cake cym cake.N.F.SG Ebll
6 1 6 . . — PUNC.FULLSTOP Atdt

Table 3.4: Part of the _holding table, showing generated glosses.

During tag generation, a _joined.tsv file is created in the background, and stored in the directory
outputs/atext. This contains the gloss and combination output, with the data items separated by tabs
– the contents of this file are copied directly into the fields of the _holding table. The relevant data is
then transferred to the _words table.

3.9 Create pdf output

Once all the words in the text have been glossed, running:
php pdfoutput.php atext

will use the data in the _utterances and _words tables to generate a .tex file (in this case, atext.tex),
which can then be processed by the LaTeX typesetting system to create a pdf (atext.tex) of the input
text, in a tiered format. The original text is on the top tier, and below it is a tier containing the glosses
– see Figure 3.4.

Figure 3.4: Default pdf output.

The default output in Figure 3.4. can be adjusted in a number of ways by passing various options (in
any order, separated by +) to pdfoutput.php:

corcencc Display CorCenCC tags instead of Siarad-style glosses.
both Display both glosses and tags on separate tiers.
colour Display glosses or tags in colour. The colours can be specified by editing the pdfoutput.php
script.

nopunc Suppress the display of glosses for punctuation marks.
notrans Suppress the translation line.

Multiple options can be passed in separated by a plus sign (+). Figure Figure 3.5 shows the output from
running:

php pdfoutput.php atext corcencc+notrans

and Figure 3.6 shows the output from running:
php pdfoutput.php atext both+colour+nopunc

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 14

Figure 3.5: Options: corcencc+notrans.

Figure 3.6: Options: both+colour+nopunc.

3.10 Create text output

Plain text output identical to that discussed in Chapter 2 can also be generated. The default output
is a horizontal gloss – see Section 2.2.1 – but three other layouts are also possible:

agvertical Vertical gloss format – see Section 2.2.2.
cchorizontal Horizontal format using CorCenCC tags – see Section 2.2.3.
ccvertical Vertical format using CorCenCC tags – see Section 2.2.4.
The output file (atext_txtoutput.txt) can be adjusted by passing one of these options into the

script – for instance:
php txtoutput.php atext agvertical

will produce a text file in the vertical gloss format.

3.11 Glossing speed

Glossing part of the CorCenCC Gold Corpus – a 3,075-word extract from the 9m-word Kynulliad3
(Donnelly, 2013) – gives a rough indication of the speed of the pipeline. Table 3.5 shows the average
of three timings at the various stages of the pipeline when run on a 2014 laptop with an Intel i7-4500
CPU and 4Gb RAM.

Stage Script Duration
Import sentences import.php 0.391
Tokenise sentences wordify.php 0.346
Generate cohorts file cohorts.php 2.841
Apply constraint grammar apply_cg.php 0.257
Trace constraint grammar trace.php 0.216
Collect part-of-speech data cgfinished.php 0.408
Generate glosses join_tags.php 0.456
Create pdf output pdfoutput.php 3.181
Create text output txtoutput.php 0.166
Total duration 8.262

Table 3.5: Duration (in seconds) at the various stages of the glossing pipeline.

Lookup and pdf generation are the slowest sections of the pipeline. Overall, the average glossing speed
is 372 words/second, or over 22,000 words/minute.4
4This is a considerable improvement on the speed (1,000 words/minute) of the Bangor Autoglosser.

CHAPTER 3. THE AUTOGLOSSER2 PIPELINE 15

3.12 Running the entire pipeline

To avoid having to run nine scripts one after the other, a compendium script (do_everything.php)
is provided to do this. Running:

php do_everything.php inputs/atext.txt

will run each script in succession, and generate all the outputs files and tables. The text to be imported
should be given as the argument to the script.
The options described above – see Sections 3.6, 3.9 and 3.10 — can also be passed (in any order,

separated by +) to do_everything.php. Thus:
php do_everything.php inputs/atext.txt raw+both+nopunc

will use raw tags for multiwords, and print a pdf file with both Siarad-type glosses and CorCenCC tags,
skipping the glossing of punctuation.

php do_everything.php inputs/atext.txt corcencc+colour+notrans+ccvertical

will print a pdf file with only CorCenCC tags, displaying these in colour, and suppressing the gist trans-
lation, and will print a txt file in vertical format.
You can of course choose to have glosses in one file and tags in another. For instance:
php do_everything.php inputs/atext.txt colour+cchorizontal

will produce a pdf file with coloured glosses, and a txt file with horizontal tags.

3.13 Glossing a directory of files

If you have a set of files in a directory, you can avoid having to run do_everything.php on them
individually by using the shell script run_do_everything.5 You need to edit the script before running it.
Your files should be placed in a directory in inputs, and the name of that directory should be specified
in the FILES line. The outputs will be placed in a directory in outputs, and the name of that directory
should be specified in the corpus line. You can then run the script:

./run_do_everything

5This is unlikely to work on Microsoft Windows without installing additional software, and may not work on Apple OSX.

Chapter 4

Constraint grammar

4.1 Introduction

“Constraint Grammar (CG), launched by Fred Karlsson in 1990, is a methodological
paradigm for natural language processing (NLP). Context-dependent rules written by a hu-
man linguist are compiled into a grammar that assigns grammatical tags to words or other
tokens in running text.
“Typical tags address lemmatisation (lexeme or base form), inflexion, derivation, syntac-

tic function, dependency, valency, case roles, semantic type etc. Each rule adds, removes,
selects or replaces a tag or a set of grammatical tags in a given sentence context.”

From: en.wikipedia.org/wiki/Constraint_Grammar (slightly edited)

Different versions of the constraint grammar formalism have been developed over the years. Karls-
son’s version (Karlsson, 1990; Karlsson et al., 1995) is now referred to as CG-1, and a later version that
made some changes was known as CG-2.
The version of constraint grammar used by Autoglosser2 is the CG-3 variant, developed as part of

the University of Southern Denmark’s Visual Interactive Syntax Learning project1 by Eckhard Bick and
Tino Didriksen (Bick, 2009; Bick and Didriksen, 2015; Didriksen, 2017). CG-3 is the most featureful
and versatile variant, and the only one under current development. It is free software, licensed under
the GPL, and is being used in a number of NLP projects, including Apertium, a free (GPL) machine
translation system.2

4.2 Key attributes of CG-3

The CG-3 constraint grammar parser applies rules in a “grammar” file (in Autoglosser2, grammar/
cym_grammar.cg3) to text input in a specific format (in Autoglosser2, the file outputs/atext/atext_
cg.txt created by cohorts.php). The rules are applied sequentially to each cohort of POS options
(readings) for a particular word until only one candidate reading is left, and can be applied in batches if
desired. The rules choose (select), remove, or add morphological, syntactic, semantic or other readings
in particular contexts conditioned by surrounding words or tags. A particular strength of constraint
grammar is that it can assign readings even to unconventional (non-standard) language such as the
conversations in the Bangor ESRC corpora, and can handle codeswitching well (Donnelly and Deuchar,
2011b). Disambiguation (reduction of the readings to one correct POS option) regularly reaches 99%,
and impressive results can be obtained with a grammar of as few as 200 rules. Grammar size can vary
substantially, depending on language and tag complement – one French grammar has 1,400 rules, while
a Danish grammar has 8,000.
A rules-based system like constraint grammar differs significantly from the current focus on machine

learning, where the idea is that if a computer can be given enough text it will be able to increasingly
accurately extract such things as tags. Rule-based systems tend to require linguistic knowledge rather
than heuristic data-analysis – for this reason, they may take longer to develop, but may be the only
viable option where large amounts of digital text are not available (for instance, in the case of minority
languages). They are also likely to give more accurate results over different language registers, and do
1visl.sdu.dk
2apertium.org

16

CHAPTER 4. CONSTRAINT GRAMMAR 17

not suffer from the possibility of implicit bias, where racial, gender and other biases in linguistic corpora
carry over into machine learning output (Caliskan-Islam et al., 2017).

4.3 Constraint grammar rules

Donnelly (2010) gives a general introduction to constraint grammar, and further details can be found
in Bick (2009), Bick and Didriksen (2015) and Didriksen (2017). This section will give a short overview
of the grammar file grammar/cym_grammar.cg3, so that users can experiment with writing their own
rules or amending existing ones.

4.3.1 Preamble

At the head of the grammar file, the DELIMITERS command specifies the items considered to mark
the end of an utterance (sentence). This is followed by a group of LIST and SET definitions, which create
sets and combine them respectively. These can be used to simplify the writing of the rules, but not all
of them are used in the remainder of the file.

4.3.2 Rule sections

The rules begin after the SECTION command. There can be multiple rule sections, and they can be
run sequentially, or in isolation, or in repeated groups. Possible reasons for multiple sections might be to
separate ”safe” rules (to be used earlier) from rules of thumb (to be used later), or to separate rules with
different areas of application (for instance, rules that act on one language in the text from those that act
on another language). This grammar file currently has two sections: the main one and an experimental
section near the end which adjusts the lemmas.

4.3.3 Rule application

Rules are always applied in the order in which they occur in the grammar file, and any given rule in
a section will be applied to all cohorts in the sentence before moving on to the next rule in that section.
Each section is applied iteratively.
A rule can act on any tag anywhere in a cohort reading – in other words, tags do not need to be in

a particular sequence or order. Each rule is run against each cohort, to see if there is a reading in the
cohort to which it should be applied.
Each rule ends with a semicolon (;), and begins with a keyword such as SELECT, REMOVE or SUB-

STITUTE. By convention, these are written in upper-case, but they also work if written in lower-case,
and this grammar file uses that option.3 There are many other keywords, but these three are the only
ones used in this grammar file.

4.3.4 Rule targets

Following the keyword is the TARGET, i.e. the word on which the rule will act. Targets can be
specified as sets, or as tags, lemmas (enclosed in double quotes), or surface words (enclosed in angle
brackets and double quotes). The last three must also be enclosed in parentheses. So:

select smtrigger if ...
would act on any words in the set of words that has been defined as triggering soft mutation.

select (n f) if ...
would act on any words which are tagged as feminine nouns.
3I find the rules easier to read in lower-case, but others may disagree.

CHAPTER 4. CONSTRAINT GRAMMAR 18

select ("coes") if ...
would act on any word whose lemma is coes, i.e. coes, goes, nghoes, coesau, goesau, nghoesau, etc.

select ("<goes>") if ...
would act on any instance of goes, but not on related forms such as coes, nghoesau, etc. Note that the if
is included in this file for readability, but is optional – the rules will work without it.

4.3.5 Rule contexts

The target can be followed by a set of contexts or conditions under which the rule will apply. If more
than one context is specified, all of them must be met (instantiated) before the rule will apply. Contexts
must be individually enclosed in parentheses, and usually consist of a position marker and a tagset. A
positive position marker refers to text to the right (coming after the target), while a negative position
marker refers to text to the left (coming before the target). A context can be negated by using NOT in
front of the position marker.
If no context is specified, the rule will apply globally – this can be used to suppress rarely-occurring

reading. For instance, the following rule will delete all readings containing a subjunctive verb, no matter
what context they occur in:

remove (v subj);
This can also be used as a shortcut to select one meaning of a word. For instance ysgol can mean “school”
and also “ladder”, but the first meaning is much more frequent. Ideally, semantic context would be used
to determine which reading to choose, but until that is possible a rule can be defined that will always
choose the ”school” meaning of the ysgol lemma:4

select ("ysgol" :school:);
or ban the ”ladder” meaning:

remove ("ysgol" :ladder:);5
This sort of global rule is used in the first few parts of this grammar file, to select most frequent lemmas
or delete rare ones, and also to remove incorrect readings, e.g. incorrect depluralisations (such as llewys,
“sleeves” being read as a plural of llew, “lion”), or impossible mutations (such as na, “than”, being read
as a nasally-mutated form of da, “good”),

4.4 Some rule examples

4.4.1 SELECT rules

select ("a" conj) if (-1 (name)) (1 (name));
Select the reading of a (and) as a conjunction if the word to the left (-1) and the word to the right
(1) are both names, as in Conwy a Gwynedd (Conwy and Gwynedd).

select ("a" pron.rel) if (1 (subj));
Select the reading of a (who, which) as a relative pronoun if the following word is in the subjunctive
tense, as in doed a ddelo (come what may).

select ("a" prt.int) if (1 (pres.indef));
Select the reading of a as an interrogative particle if the following word is in a present indefinite
verb, as in a oes heddwch? (is there peace?).

select (prt.aff) if (not -1 (prep)) (1 inflected);
Select the reading of mi as an affirmative particle if the following word is an inflected verb, but not
if the preceding word is a preposition. This will apply to mi welodd (he saw), but not to wrth i mi
gyrraedd (as I arrived).

select ("mi" pron) if (-1 ("i" prep));
4Obviously, this will give an incorrect gloss when the “ladder” meaning is actually intended!
5Note that in the output from cohorts.php, the English lemma is surrounded by colons, and they need to be replicated in the

rule.

CHAPTER 4. CONSTRAINT GRAMMAR 19

Select the reading of mi (me) as a pronoun if the preceding word is the lemma i used as a preposition,
as in i mi (to me).

select ("â" conj) if (-1 (adj.eq));
Select the reading of â (as) as a conjunction if the preceding word is an equative adjective, as in cyn
belled â (as far as).

select ("â" prep) if (1 (det.def) or (n) or (name)) (not -1 (adj.eq));
Select the reading of â (with) as a preposition if it is preceded by the definite article, a noun or a
name, and not followed by an equative adjective, as in aeth taid a’̂r ddwy ferch (grandfather went
with both girls) or ffinio â Lloegr (bordering [with] England).

select ("yn" prt) if (1C (adj));
Select the reading of yn as a particle if the following words is definitely (C for certain or careful) and
adjective, as in yn hapus (happy).

select ("yn" prep) if (1 (det.def));
Select the reading of yn (in) as a preposition if the following word is a definite article, as in yn y tŷ
(in the house).

select ("o" :of:) if (1 (det.def) or (adj.poss));
Select the reading of o (of, from) as a preposition if the following word is a definite article or a
possessive adjective, as in o’r môr (from the sea) or o’n ffrindiau (from our friends).

select ("fo" pron) if (-1 (infin)) (1 (prt)) (2 (adj));
Select the reading of o (< fo, “he, him”) as a pronoun if the preceding word is a verbal infinitive,
the following word is the particle yn, and the word after that is an adjective, as in i wneud o’n saff
(to make it/him safe).

select ("cyn" prep) if (not 1 (adj.eq));
Select the reading of cyn (before) as a preposition if the following word is not an equative adjective,
as in cyn mynd (before going).

select ("deg" num) if (1 (n));
Select the reading of deg (ten) as a numeral if the following word is a noun, as in deg awr (ten hours).

select ("pryd" :meal:) if (1* ("bwyd"));
Select the reading of pryd with the English lemma “meal” if the lemma bwyd (food) follows (*)
anywhere, as in pryd o fwyd (a meal).

select ("pryd" :time:) if (-1 ("pa" :which:));
Select the reading of pryd with the English lemma “time” if preceded by the lemma pa with the
English lemma “which”, as in pa bryd? (when?).

select ([eng]) if (-1 ([eng])) (1 ([eng]));;
Select the English reading if the word is preceded and followed by English words.

4.4.2 REMOVE rules

My suggestion is that REMOVE rules should be avoided unless the removal context is bullet-proof –
they can have unintended consequences if the context is not carefully defined, and in most cases SELECT
rules are to be preferred.
remove ("yn" prep) if (1 (sm));
Remove the reading of yn (in) as a preposition if it is followed by a word showing soft mutation –
the preposition yn is followed by nasal mutation.

remove (prt.aff) if (-1 inflected);
Remove the reading of mi (in) as an affirmative particle if it is preceded by an inflected verb, as in
sgiwsiwch fi (excuse me).

CHAPTER 4. CONSTRAINT GRAMMAR 20

remove ([eng]) if (0 ([cym]));
Remove an English reading if a Welsh one exists for the current word (0).

4.4.3 SUBSTITUTE rules

Rules applying a substitution have four parameters: the items that are to be changed, the items they
are to be changed to, the context in which those items occur, and the context in which they should be
changed. To paraphrase: replace A with B in the context X when conditions Y apply.6 Autoglosser2 is
currently only using SUBSTITUTE rules experimentally to adjust the English lemma in the glosses.
substitute (:class:) (:district:) ("dosbarth" [cym] n m sg :class:) if (-1 ("cyngor"));
Replace the English lemma “class” with “district” when the lemma is dosbarth and the preceding
word is cyngor (council), as in cyngor dosbarth (district council).

substitute (adj :other:) (adv :else:) ("arall" adj :other:) if (-1 ("rhywbeth") or ("rhy-
wle"));
Replace the English lemma “other” with “else”, and change the part of speech from adjective to
adverb, when the lemma is arall and the preceding word is rhywbeth (something) or rhywle (some-
where), as in rhywbeth arall (somewhere else).

substitute (:all:) (:completely:) ("cwbl") if (1 (adj));
Replace the English lemma “all” with “completely” when the lemma is cwbl and the preceding word
is an adjective, as in cwbl sarhaus (completely insulting).

4.5 Contributing

The results from this Autoglosser2 grammar file are good, but still at an early stage. As it currently
stands, the rules are fairly basic – they could be improved or made more abstract using sets. More
might also be done to group rules so that rule order has no effect. Further work along these lines would
help contribute to a useful set of NLP tools for Welsh, e.g. dependency trees, syntactic analysis, etc.
If you would like to improve things, I would be happy to take suggestions on board – fork the repo,
make your changes, and then submit a pull request, or send me your revised grammar file directly
(kevin@dotmon.com).

6The keyword is actually SUBSTITUTE, but the most common English construction here is “substitute A for B”, which implies
ending up with A; the CG-3 authors are using the less common construction “substitute A with B”, which implies ending up with
B, like the more frequent “replace A with B”. This is because REPLACE is already being used as a keyword to replace individual
tags in a reading.

Chapter 5

Eurfa

5.1 Introduction

Work on Eurfa (Donnelly, 2016) began in 2003, and the first version was released in 2006. It is the
largest Welsh dictionary under a free (GPL) license,1 and it was the first dictionary of a Celtic language
to list verbal inflections and mutated forms as headwords. Currently it contains around 10,500 lemmas.
Further information, and a web interface, is available at the Eurfa website,2 and the contents of the
dictionary are available at the Git repository3 – see Appendix A/4. A key aim for Eurfa is that it should
be useable in a variety of Welsh NLP situations, so its structure reflects the need for versatility. This
chapter summarises the main features of Eurfa as a component of Autoglosser2.
Eurfa was used in the first-ever glosser for Welsh conversational text, the Bangor Autoglosser,4 devel-

oped in 2009-2011 as part of a multilingual spoken corpus project run by the ESRC Centre for Research
on Bilingualism at Bangor University. One of these corpora, the Welsh-English Siarad corpus, was the
first Welsh corpus to be released under a GPL license, and the same license has been applied to the
others (a Welsh-Spanish corpus from Patagonia, and an English-Spanish corpus from Miami).
Eurfa has also been used in two other Welsh NLP projects: the Welsh Natural Language Toolkit5 and

the Corpus Cenedlaethol Cymraeg Cyfoes (CorCenCC – the National Corpus of Contemporary Welsh).6

Eurfa’s function in all these software programs is to provide a listing of possible parts of speech for
any given word. This listing can then be pruned to leave (hopefully) one item which applies to the word.

5.2 Structure

The main elements of the eurfa database table are exemplified in Table 5.1.

surface lemma enlemma pos gender number tense corcencc plural
coes coes leg n f sg E b u coesau
dyfroedd dŵr water n m pl E g ll
mynd mynd go v infin Be
aeth mynd go v 3s past B gorff 3 u
hapus hapus happy adj Ans cad u
rhywsut rhywsut somehow adv Adf
heb heb without prep Ar sym

Table 5.1: Eurfa structure.

The structure of Eurfa has changed at various points over the years (as can be seen from its commit
history), and it is important to emphasise that this is likely to continue, but the original aim was to create
a datasource that was versatile enough to be used in a variety of computerised NLP tasks, but which
1gnu.org/licenses/gpl.html
2eurfa.org.uk
3bitbucket.org/donnek/eurfa
4bangortalk.org.uk/autoglosser.php
5hypermedia.research.southwales.ac.uk/kos/wnlt
6corcencc.org

21

CHAPTER 5. EURFA 22

would be easily editable by non-specialists. This is why the data is maintained in one database table,
rather than using multiple tables linked by foreign keys: the layout will be familiar to anyone who has
compiled a simple glossary or vocabulary list, and allows the dictionary to be opened in a spreadsheet,
if desired, to add new entries or edit existing ones.7

The eurfa database table contains 17 fields, though not all are used for each entry:
id A numeric identifier for the entry.
surface The form of the word as it might appear in running text – the “surface” form derived from
the lemma by the addition of various morphemes.

lemma The underlying (base, stem) form of the word. This is usually the form listed as the head-
word in a traditional dictionary (e.g. the infinitive for verbs, the singular for nouns),and may be
identical to surface in many cases. Lemma allows related words to be grouped in searches.

enlemma The lemma of the English word equivalent to the Welsh lemma.
pos The part of speech of the word, e.g. adjective, verb, noun, interactional marker, name, punctu-
ation, etc. For the various components in this and the next three fields, see Appendix B.

gender The grammatical gender of the word, e.g. masculine, feminine.
number The grammatical number of the word, e.g. singular, plural. This also includes person for
verbs.

tense The tense of the word if it is a verb.
usage Notes on the usage of the word, e.g. spoken form, non-standard form, error, etc.
gramnotes Notes on grammatical aspects of the word, e.g. the form occurs pre-vowel, as a verbal
object, before a measurement word, etc.

extended A more detailed definition of the word, such as might occur in a dictionary. This may
contain multiple English options, while lemma will contain only one (the most common), allow-
ing it to be used in glosses. For instance, gweddill has ”remainder” in enlemma and ”remainder,
remnant” in extended, meaning that we only need to maintain one entry in the dictionary instead
of two (one for each meaning), and do not need to add rules in Autoglosser2 ruling out one of
them.8 Additional clarifications may also be added here for people, places or organisations, e.g.
the fact that Estyn is an education and training inspectorate for Wales.

corcencc The tag for this word as used by CorCenCC. These are generated by programmatically
mapping existing Eurfa POS data onto CorCenCC tags – see Appendix C for a full list. In Eurfa,
the components of the tag are separated (e.g. E b u instead of Ebu), and joined together when the
tag is printed out - this is to allow easier application of constraint grammar rules if desired.

posplus Additional part of speech information, e.g. whether a name is a toponym or a personal
name, the degree of a demonstrative (near, far, etc), the type of punctuation mark, etc. This field
is also used to mark things such as incorrect double mutations.

deriv Currently unused – available for future display of etymology.
plural The plural form of nouns where the singular can be predicted from the plural (at least 75%
of Welsh singulars are in this category). Plurals which are not predictable are given their own
main entry. In Autoglosser2, we de-pluralise words, look up the singular, and then mark the part
of speech as plural (see Section 3.5), so the plural column is not used. It is, however, necessary
for dictionary use: for any given noun, we search in both the surface field (for non-predictable
plurals) and the plural field (for predictable plurals), and if an entry is found in either, we can
then display the entry as “(plural of:)” using the lemma field for (for non-predictable plurals) or
the surface field (for predictable plurals).

segment The morphological segmentation of the word. This is work in progress, and is only filled in
for nouns at the minute. Morpheme boundaries are shown with % (e.g. iach%awd%wr%i%aeth,
salvation), and word boundaries of combined words with ∼ (e.g. byd∼enw%og, world-famous).
Morphemes are spelt in their “base” form, even where there are spelling changes in the surface
word, e.g. am%cylch%i%ad→ amgylchiad (circumstance), arwain%ydd→ arweinydd (leader). Seg-
ment allows derivationally-related words to be grouped in searches.

status Currently unused – available for future development.
7Another benefit of this simple word-based approach is that it is possible to plug a wordlist for any language into Autoglosser2

and get some output immediately (though it will not be disambiguated) – this means that it is easy to get started on producing
an autoglosser for a new language.
8Cases where one English equivalent might be more appropriate than another can be handled by contextual rules in the

constraint grammar – see Section 4.4.3.

CHAPTER 5. EURFA 23

5.3 Content

Although Eurfa should cover at least 80% of common text, it is inevitable that there will be words
in the text that are not in Eurfa. The output pdf flags missing (“unknown”) words in red, as does the
web output.9 Adding such words to Eurfa will not only allow them to be glossed, but may also improve
the glossing of surrounding words – for instance, if a rule for a word A depends on knowing whether a
following word B is a noun or a verb, then word A is likely to remain undisambiguated if the following
word B cannot be resolved as either because it is missing from Eurfa.10

The approach to content adopted for Autoglosser2 has been to seek to put as much material as possi-
ble into the dictionary, so that there is only one source that needs to be edited, rather than multiple files.
Punctuation, abbreviations,11 letters of the alphabet, etc. are therefore all included in Eurfa alongside
“normal” words. Eurfa also contains colloquialisms and re-spellings based on actual pronunciation (e.g.
gyn for gan) which were used in the Siarad conversations and reflect spoken rather than written Welsh.
A few entries also reflect errors or non-standard usage (e.g. hawsach (easier) instead of haws; blynyddau
(years) instead of blynyddoedd; double mutation) as recorded in Siarad.
Note that when used in Autoglosser2 Eurfa has a symbiotic relationship with it. Changing aspects

such as tokenisation or cohort generation may require changes in the content (new entries) or structure
(new fields) in Eurfa, and these changes may in turn require changes in the rule definitions in the
constraint grammar.

5.4 Contributing

If you can improve Eurfa (either by suggesting new features or donating new lexical data), I would be
happy to take suggestions on board – fork the repo, make your changes, and then submit a pull request,
or send me your suggestions directly (kevin@dotmon.com).

9Note that words which are not so marked may also be incorrectly glossed!
10The long-term answer to this is of course to add more words to Eurfa, which can be a slow process. It is unfortunate that so
little lexical data for Welsh is available under a free (or even open) license, but things are slowly changing.
11Abbreviations and acronyms are listed in undotted form (i.e. BBC instead of B.B.C. or B. B. C.). All variants will be glossed,
but the gloss will contain the undotted form even if the original word is dotted.

Chapter 6

Customising Autoglosser2

6.1 Introduction

This chapter summarises areas where you can customise or improve the output of Autoglosser2 for
your own needs.1 This is apart from aspects such as improving or adding to the number of constraint
grammar rules (Chapter 4), or expanding Eurfa (Chapter 5).

6.2 Web interface

The default web interface has a truncation limit of 300 characters. If you are running Autoglosser2
on a local webserver, you can change this limit by finding this line in postag_welsh.php:

$instring=strip_tags(substr($instring, 0, 300));

and editing it to increase the figure of 300, or commenting it out entirely (by placing two slashes – //
– at the beginning) to remove any length limit on the text.
The default tiered output of the web interface is 4 words wide. If you want to take advantage of a

wider screen, this can be adjusted by finding this line in txtoutput.php:
$chunks=array_chunk($values, 4, true);

and changing “4” to an appropriate number. Bear in mind that you may also need to change the CSS
rules governing the layout of the page (style.css).

6.3 Import

The segmentation process in import.php sets an end-of-sentence marker, and then reverts it in partic-
ular cases (e.g. abbreviations, acronyms, instances where the sentence-end comes within quote-marks).
Common abbreviations (e.g. Dr., Ltd., Jan.) are marked so that their final fullstops will not be mis-

taken as a sentence ending. The list is contained in the mark_abbrevs() function in includes/fns.php, and
can be extended as required.

6.4 Tokenisation

The tokenisation process in wordify.php is based on surrounding all non-alphanumeric characters
with spaces, and then reverting those spaces in particular cases.2

Hyphenated words need special handling, relating especially to the ways in which they may be cap-
italised. For instance, cyd-destunoli (contextualise) would usually be capitalised as Cyd-destunoli, but in
1Bear in mind that Autoglosser2 is licensed under the GPL, so if you “distribute” the revised code in any way you need to make

that revised code available somewhere for download.
2My current view is that off-the-shelf tokenisers, many of which require the installation of sizeable libraries (9Mb in one case)

do not offer substantially better results than the (8Kb) approach adopted here, but I remain open to persuasion.

24

CHAPTER 6. CUSTOMISING AUTOGLOSSER2 25

headings may also be capitalised as Cyd-Destunoli. The tokenisation process joins uncapitalised post-
hyphen items to capitalised or uncapitalised pre-hyphen components, so in this case destunoli will be
joined to the component Cyd, and the whole hyphenated word will then be looked up in Eurfa as cyd-
destunoli. This approach allows compounds such as Llafur-Plaid (Labour-Plaid [Cymru]) or Abertawe-
Caerdydd (Swansea-Cardiff) to be left unjoined, with each side of the compound being looked up indi-
vidually. However, this also means that Cyd-Destunoli will be treated as a compound, and the lookup
will fail or be incorrect. To handle this, a specific subset of components (e.g. cyd-, di-, ôl-) is listed in
the hyphcomp() function in includes/fns.php, and can be extended as required.

6.5 Cohort generation

Lookup routines for different languages can be added to cohorts.php, either replacing lookups/
cym_lookup,php, or augmenting it with lookups for different languages. The Bangor Autoglosser used
the latter approach, with the dictionary to be looked up depending on the language tag assigned to
the word by the transcriber of the conversation, but it would also be possible simply to look up the
word successively in all the dictionaries. This is done simplistically in Autoglosser2, where an English
wordlist (saesneg)3 is looked up as part of lookups/cym_lookup,php to identify possible English words,
but unlike the fuller lookup in the Bangor Autoglosser, no parts of speech are given for those words.
This behaviour can be adjusted by augmenting the English dictionary to include parts of speech (for
instance, by swapping in the one from the Bangor Autoglosser).
What each lookup file does can also be customised. For instance, the URL identification in the default

Welsh lookup is simplistic, and only covers the most basic types of URL.
The layout of the cohorts file is also variable within limits – the constraint grammar parser offers

some flexibility as regards the format of the file it will accept. This means that data (eg location data)
can be written to that file for use outside constraint grammar itself.

6.6 Gloss generation

The data in the _cgfinished table can be formatted in a variety of ways, so it is possible to generate
glosses or tags in a particular format to suit your application.
If you need a completely different tagset, that can be created by adding another column to Eurfa and

adding the tags programmatically to each word (as was done for the CorCenCC project). They can then
be used in the pipeline at the cohort generation stage.

6.7 Pdf output

The colours for the glosses or tags can be edited in pdfoutput.php:
$gcolour="Blue";
$tcolour="Green";

The output .tex file includes Uwe Kern’s xcolor package,4 so a wide range of colours is available, as
listed in Section 4 of the xcolor manual.5

John Frampton’s ExPex package6 is used for the alignment of the glosses or tags with the original
text. This package offers many alternatives, and since the glossing data is contained in a database table
it can be output programmatically in various different formats to leverage those alternatives.
3Based on Alan Beale’s 12dicts 5d+2a list – wordlist.aspell.net/12dicts-readme/#internat.
4ctan.org/pkg/xcolor
5mirrors.ctan.org/macros/latex/contrib/xcolor/xcolor.pdf
6ctan.org/pkg/expex

CHAPTER 6. CUSTOMISING AUTOGLOSSER2 26

LaTeX in general offers a multitude of possibilities for elegant typesetting, so there are many ways in
which the glossed data can be presented to readers in an attractive format, or used in academic papers
or books – for a demonstration of its versatility outside the field of part of speech tagging, see Donnelly
(2017, Chapter 8).

6.8 Txt output

The web and text output can be adjusted to suit your own needs, and the text output can be ingested
directly by other programs, so that (for instance) syntactical structure or semantic domain can be further
investigated.7

XML output is also possible, but is not offered by default, largely because there is no consensus on
what a “canonical” XML file for NLP work should look like.8

6.9 Contributing

If you would like to improve Autoglosser2, I would be happy to take suggestions on board – fork the
repo, make your changes, and then submit a pull request, or sendme your code directly (kevin@dotmon.com).
The coding style is pretty obvious: blank lines between “sections” of code, plenty of comments, and NO
brace at the end of lines – put them on a new line. I also prefer procedural style with functions rather
than object-oriented, but I’m happy to be convinced otherwise.

7Of course, it is also possible to manipulate the database tables directly to create new tables for particular purposes – see, for
instance, Broersma et al. (2018) and Deuchar et al. (2016).
8In my view, there are other reasons to avoid using XML in NLP work in any case.

References

Bick, E. (2009). Basic Constraint Grammar tutorial for CG-3 (Vislcg3). beta.visl.sdu.dk/cg3_howto.
pdf.
Bick, E. and T. Didriksen (2015). CG-3: Beyond classical Constraint Grammar. In Proceedings of NODAL-
IDA 2015, Vilnius, Lithuania. aclweb.org/anthology/W15-1807.
Broersma, M., D. Carter, and K. Donnelly (2018). Triggered codeswitching: Lexical processing and
conversational dynamics. Bilingualism: Language and Cognition. Forthcoming.
Caliskan-Islam, A., J. J. Bryson, and A. Narayanan (2017). Semantics derived automatically from lan-
guage corpora necessarily contain human biases. Science 356, 183–186.
Carter, D., M. Broersma, and K. Donnelly (2016). Applying computing innovations to bilingual corpus
analysis. In A. Alba de la Fuente, E. Valenzuela, and C. Martínez-Sanz (Eds.), Language Acquisition
Beyond Parameters: Studies in Honour of Juana M. Liceras, Number 51 in Studies in Bilingualism, pp.
281–301. Amsterdam: John Benjamins.
Carter, D., M. Broersma, K. Donnelly, and A. Konopka (2017). Presenting the Bangor Autoglosser and
the Bangor Automated Clause Splitter. Digital Scholarship in the Humanities.
Comrie, B., M. Haspelmath, and B. Bickel (2008). Leipzig glossing rules: conventions for interlinear
morpheme-by-morpheme glosses. eva.mpg.de/lingua/resources/glossing-rules.php.
Deuchar, M., K. Donnelly, and C. Piercy (2016). Mae pobl monolingual yn minority: Factors favouring
the production of code-switching by Welsh-English speakers. In M. Durham and J. Morris (Eds.),
Sociolinguistics in Wales, pp. 209–239. London: Palgrave Macmillan.
Deuchar, M., P. Webb-Davies, and K. Donnelly (2018). Building and Using the Siarad Corpus: Bilingual
conversations in Welsh and English. Number 81 in Studies in Corpus Linguistics. Amsterdam: John
Benjamins. Forthcoming.
Didriksen, T. (2017). Constraint Grammar Manual. beta.visl.sdu.dk/cg3/chunked.
Donnelly, K. (2010). Getting started with Constraint Grammar. kevindonnelly.org.uk/resources/
tutorial.pdf.
Donnelly, K. (2013). Kynulliad3: a corpus of 350,000 aligned Welsh-English sentences from the Third
Assembly (2007-2011) of the National Assembly for Wales. cymraeg.org.uk/kynulliad3.
Donnelly, K. (2016). Eurfa: a free (GPL) dictionary for Welsh, v3. eurfa.org.uk.
Donnelly, K. (2017). Writing and transliterating Swahili in Arabic script with Andika! kevindonnelly.
org.uk/swahili/manual_draft.pdf.
Donnelly, K., S. Cooper, and M. Deuchar (2011). Glossing CHAT files using the Bangor Autoglosser. 8th
International Symposium for Bilingualism, Oslo, Norway. kevindonnelly.org.uk/resources/words/
Donnelly2011_ISB8.pdf.
Donnelly, K. and M. Deuchar (2011a). The Bangor Autoglosser: a multilingual tagger for conver-
sational text. In Proceedings of the Fourth International Conference on Internet Technologies and Ap-
plications (ITA11), Wrexham, Wales. kevindonnelly.org.uk/resources/words/Donnelly2011_
Autoglosser.pdf.
Donnelly, K. and M. Deuchar (2011b). Using constraint grammar in the Bangor Autoglosser to disam-
biguate multilingual spoken text. In Constraint Grammar Applications: Proceedings of the NODALIDA
2011 Workshop, Riga, Latvia, NEALT Proceedings Series, Tartu, pp. 17–25. hdl.handle.net/10062/
19298.

27

REFERENCES 28

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text. In COLING-90:
Proceedings of the 13th Conference on Computational Linguistics, Somerset, NJ, pp. 168–173. Association
for Computational Linguistics. anthology.aclweb.org/C/C90/C90-3030.pdf.
Karlsson, F., A. Voutilainen, J. Heikkilä, and A. Anttila (1995). Constraint Grammar: a Language-
Independent System for Parsing Unrestricted Text. Berlin: Mouton de Gruyter.

Appendix A

Installing Autoglosser2

A/1 Introduction

This appendix explains how to install from scratch the software that Autoglosser2 needs. The installation
has been tested on Ubuntu Linux 14.04 and 16.04,1 and it should run on other platforms in a virtual ma-
chine.2 If you are having difficulties getting something installed, please email me at kevin@dotmon.com
– although I have tried the instructions below on a “clean” machine, I may nevertheless have missed
something, or got the sequence wrong.
Most of the install is carried out by typing commands directly into a terminal or console. This is because
this method is much faster and more succinct than explaining how to point-and-click through various
dialogue boxes.

A/2 Conventions

Unless otherwise indicated, lines in
monospaced font

are commands to be typed in.
Unless otherwise indicated, all commands should be activated by pressing Return at the end of the
command.
The symbol ↪→ at the beginning of a line means that it is a continuation of the previous command, and
therefore Return should only be pressed after the end of this line.
Keys separated by + should be pressed simultaneously. Thus Ctrl+X means “press the Ctrl key at the
same time as the X key”.
When a command starts with sudo, you will be asked to type in your superuser (administrative) pass-
word, which you should have been asked to set up when you first installed Ubuntu, before the command
is allowed to proceed. Note that you will get no feedback from the password entry (the line will stay
blank) until you press Return.
If at any point the system suggests adding other packages (called dependencies) based on the ones you
are installing, accept those suggestions by pressing Y or typing yes.
Unless otherwise indicated, it is assumed that all commands are run from the suggested base directory
for Autoglosser2, /var/www/autoglosser – see Section A/3.

A/3 Download Autoglosser2

The main reason you’re here! First, install Git, which keeps track of changes made to files:
sudo apt-get install git

and then move to your home directory (USER here stands for the username you set up when you installed
1ubuntu.com
2e.g. virtualbox.org

29

APPENDIX A. INSTALLING AUTOGLOSSER2 30

Ubuntu; replace it with your actual username),3 and download Autoglosser2:
cd /home/USER
git clone https://bitbucket.org/donnek/autoglosser2.git

After a minute or two, Autoglosser2 will be downloaded into an autoglosser2 folder in /home/USER. In
the future, if you want to update Autoglosser2, you can open a terminal in the autoglosser2 folder and
type:

git pull
Git will automatically update those parts of Autoglosser2 which have been changed.
To allow for the web interface (for configuration, see Appendix A/8), move the autoglosser2 directory
to /var/www, the default location for storing webpages on Ubuntu:

sudo mv autoglosser2 /var/www/
Note the final slash. Give yourself (USER stands for your own username) ownership of the /var/www
directory;

sudo chown -R USER.USER /var/www/
and then set up a link from your /home/USER directory to the /var/www/ directory:

ln -s /var/www/ web
Now when you go to /home/USER/web in a file manager, it will take you to /var/www/. Move into the
autoglosser2 directory for the rest of the installation:

cd web/autoglosser2

A/4 Download Eurfa

Eurfa provides a dictionary giving part of speech information about Welsh words in your text:
git clone https://bitbucket.org/donnek/eurfa.git

These files will be installed later as database tables (see Appendix A/11).

A/5 Install fonts

These fonts are used in the pdf output:
sudo apt-get install fonts-sil-charis fonts-liberation fonts-linuxlibertine

↪→ fonts-dejavu

A/6 Install Constraint Grammar 3

CG-3 will apply constraint grammar rules to a file of word cohorts. First, install wget:
sudo apt-get install wget

and add the repository signing key to your keyring:
sudo wget http://apertium.projectjj.com/apt/apertium-packaging.public.gpg
↪→ -O /etc/apt/trusted.gpg.d/apertium.gpg

Then add the relevant Ubuntu CG-3 repository (replace DISTRO with your Ubuntu version, e.g. trusty,
wily):

echo "deb http://apertium.projectjj.com/apt/nightly DISTRO main"
↪→ sudo tee /etc/apt/sources.list.d/apertium-nightly.list

and update the repository list:
sudo apt-get update

so that you can install CG-3 and its integrated development environment (IDE):
sudo apt-get install cg3 cg3ide

3The terminal prompt will tell you what your username is – it is of the form user@computer.

APPENDIX A. INSTALLING AUTOGLOSSER2 31

A/7 Install Apache2

Apache2 is a webserver which displays the Autoglosser2 web interface:
sudo apt-get install apache2 apache2-utils phppgadmin

Start the webserver:4
sudo service apache2 start

and then open a web browser (preferably Firefox) and enter:
http://localhost

into the address bar. A page will open, telling you that Apache2 is installed and working.

A/8 Configure the web interface

Tell Apache2 where to find the Autoglosser2 webpages by opening a new configuration file:
sudo nano /etc/apache2/sites-available/autoglosser2.conf

Nano is a lightweight text editor: use the arrow keys on the keyboard to move around, and the Home
and End keys to move to the beginning or end of a line. Type in the following lines:

<VirtualHost *:80>
ServerName autoglosser2
DocumentRoot /var/www/autoglosser2/
</VirtualHost>

Save the file: press Ctrl+X, then press Y to confirm you want to save the modifications, and press Return
to close the file. Activate the configuration:

sudo a2ensite autoglosser2 and restart the webserver:
sudo service apache2 restart

Tell your web browser that the new website is on your machine (so it will not try to look for it on the
web) by opening the hosts configuration file:

sudo nano /etc/hosts
After the line:

127.0.0.1 localhost
add the following line:

127.0.0.1 autoglosser2
Then save and exit the configuration file (Ctrl+X → Y → Return), and type:

http://autoglosser2
into the address bar of your browser. Youwill get the Autoglosser2 web interface from /var/www/autoglosser2.

A/9 Install PHP

PHP is the scripting language used by Autoglosser2:
sudo apt-get install php5 php5-cli

Once installed, open the PHP command-line configuration file so that you can change some settings:
sudo nano /etc/php5/cli/php.ini

Press Ctrl+W, then type
max_execution_time

into the searchline and press Return. Change the line to read:
max_execution_time = 300

Press Ctrl+W again, and type
error_reporting

and press Return. Change that line to:
error_reporting = E_ALL & ~E_NOTICE & ~E_DEPRECATED

4If you want to get rid of the (harmless) message “Could not reliably determine the server’s fully qualified domain name, using
127.0.1.1. Set the ‘ServerName’ directive globally to suppress this message”, issue the following commands:
echo "ServerName localhost" | sudo tee /etc/apache2/conf-available/servername.conf
sudo a2enconf servername
sudo service apache2 restart

APPENDIX A. INSTALLING AUTOGLOSSER2 32

Scroll down (using the mouse or down arrow) to the display_errors line a bit lower down. Change it to
read:

display_errors = On
Below that there is a log_errors line. Change it to read:

log_errors = Off
Save and exit the configuration file (Ctrl+X → Y → Return)
PHP is an easy computer language to get to grips with, gives immediate results, and works on both the
browser and the console, but describing it lies outside the scope of this manual. There are many tutorial
sources on the internet.

A/10 Install PostgreSQL

PostgreSQL is the database that will handle the storage your text data:
sudo apt-get install postgresql postgresql-client postgresql-common
↪→ postgresql-contrib php5-pgsql

On Ubuntu, PostgreSQL uses peer authentication by default. Creating a database user with the same
name as your system (Ubuntu) user will therefore mean that you can log in to the database without
entering a password. To set yourself up as the database user, become the postgres master user:

sudo su - postgres
(note the space on either side of the dash). Enter your superuser (administrator) password. The prompt
will change to postgres@computer. Create a new database user with the same name as your username
(USER below):

createuser -P -s -e USER
Enter a password – note that you will get no feedback (the line will stay blank). Press Return, and enter
the password again. Press Return and you should get a message beginning CREATE ROLE, meaning that
the new user has been created. Go back to being your normal user:

exit

The Structured Query Language (SQL) used by relational databases like PostgreSQL is very powerful
and flexible, but describing it lies outside the scope of this manual. There are many tutorial sources on
the internet.

A/11 Configure the database connection

Configure Autoglosser2 to use your new database account by opening the configuration file:
nano autoglosser2/config.php

and changing:
user=kevin password=kevindbs

to read:
user=USER password=yourpassword

(remember to replace USER with your username). You need to edit two lines (one for the autoglosser2
database and one for the eurfa database), and also edit the password (PGPASSWORD=) and username
(-U) on the third line (the one for the psql shell). Exit the configuration file (Ctrl+X → Y→ Return), and
then move the configuration data outside the web directory:

sudo mv autoglosser2/ /opt/
entering your superuser password when asked. The database connection file is now at /opt/autglosser2,
which is where the other scripts in Autoglosser2 expect to find it.
Create the autoglosser2 database to hold the data you want to gloss:

createdb autoglosser2
and import the English wordlist:

psql -d autoglosser2 < dbs/saesneg.sql
Create the eurfa database to hold the Welsh dictionary:

createdb eurfa

APPENDIX A. INSTALLING AUTOGLOSSER2 33

Import the Eurfa data (downloaded in Appendix A/4) into the database:
psql -d eurfa < eurfa/eurfa.sql

A/12 Install phpPgAdmin

phpPgAdmin is a browser interface to PostgreSQL – it will make it easier to inspect your database tables:
sudo apt-get install phppgadmin

Activate the phpPgAdmin configuration file:
sudo cp /etc/apache2/conf.d/phppgadmin /etc/apache2/conf-enabled/phppgadmin.conf

and then restart the webserver:
sudo service apache2 restart

In a web browser, enter:
http://localhost/phppgadmin

into the address bar. You should see the phpPgAdmin homepage. On the left side there is a list of servers.
Click on PostgreSQL and you should get a login form. Fill in the username and password for PostgreSQL
(which you created in Appendix A/10) and click Login. In the left-hand panel you should get a list of
your current databases – there should be three: autoglosser2, eurfa, and postgres (the system database,
which you will not be using).
Click the+ beside eurfa in the left-hand panel. It should open to show Schemas, public, Tables etc. Click
on Tables. The right-hand panel should now show you the (only) table – eurfa – inside the eurfa database.
Click on eurfa and you will see the data fields in that table. To see the contents of the table you can click
on the Browse button. To export the table to csv (which can be opened in a spreadsheet), click Export in
the top button bar. The SQL link at the top right of the phpPgAdmin window can be used to make SQL
queries to the database.
You are likely to be using the autoglosser2 database rather than the eurfa database, but the same principles
apply there when you want to look at the tables created by the glossing process.
The default session time for phpPgAdmin is set to 24 minutes (1440 seconds), meaning that if you do
not use phpPgAdmin for 24 minutes, it will ask you to log in again before you can continue using it.
You can change this by opening the PHP web configuration file:

sudo nano /etc/php5/apache2/php.ini
Press Ctrl+W, then type:

session.gc_maxlifetime
and press Return. Change the line to read:

session.gc_maxlifetime = 144000
This will allow you 40 hours before logging you out, which should be sufficient.

A/13 Install SQL Workbench/J

SQL Workbench/J is another interface to PostgreSQL – its main benefit is that a result set can be directly
edited to update the data. It uses Java, and you can begin installing the Oracle version of Java by adding
Andrei Alin’s repository:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:webupd8team/java

and updating your software package list:
sudo apt-get update

Then install the Java installer:
sudo apt-get install oracle-java8-installer

which installs a script that downloads and installs Java 8 from the Oracle website. You will be asked to
accept the Oracle license before the installation begins. Once installed, runningl:

java -version
should return some text telling you that the Java version is 1.8.0. Now install software to allow SQL

APPENDIX A. INSTALLING AUTOGLOSSER2 34

Workbench to connect to the PostgreSQL database:
sudo apt-get install libpostgresql-jdbc-java

Now you can install SQL Workbench/J itself. Create a subdirectory for it:
mkdir sqlworkbench

and then go to the website sql-workbench.net, click on the link for Build 123 (or whatever the current
stable version is), and download the generic package. Save it in the autoglosser2 directory, and then
unzip the download into the new directory:

unzip -q Workbench-Build123.zip -d sqlworkbench
Make the launch script executable:

chmod +x sqlworkbench/sqlworkbench.sh
and launch SQL Workbench/J:5

sqlworkbench/sqlworkbench.sh

A/14 Configure SQL Workbench/J

The first thing you will see is a Select Connection Profile box, where you need to add the details of the
Autoglosser2 database. Change New profile to read autoglosser2. Click the drop-down arrow on the Driver
line and select PostgreSQL. Click Yes when you’re asked whether you want to edit the driver definition.
On theManage Drivers popup, click on the red postgresql entry already there and then click X to delete it.
Click on the folder icon and navigate to /usr/share/java/postgresql-jdbc4-9.2.jar (which you just installed
– Appendix A/13). Click Open, and then OK. Check that the URL line reads:

jdbc:postgresql://localhost:5432/andika
If not, edit it to make it so. Enter your PostgreSQL username and password (Section A/10), and then
click OK. You will get a connecting message.
If you like, you can also set up a connection to the Eurfa database, which will allow you to add new
entries and edit existing ones. Press Alt+C to bring up the Select Connection Profile box again. Click the
first button in the left-hand panel (Create a new connection profile), and change New profile to read eurfa.
Then proceed as for the autoglosser2 database.
Once both connection profiles are set up, select File→ Save Profiles to save them.

A/15 Install LaTeX

LaTeX is an unbelievably versatile typesetting system that provides attractive pdf output in Autoglosser2:
sudo apt-get install texlive texlive-base texlive-latex-base texlive-latex-recommended

↪→ texlive-latex-extra texlive-xetex texlive-generic-extra texlive-humanities
↪→ texlive-publishers texlive-extra-utils texlive-pstricks texlive-bibtex-extra
↪→ kile kbibtex biber

Note that these packages will take perhaps 20 minutes to download and install.

5You can make a desktop shortcut or menu entry to make launching SQL Workbench easier.

Appendix B

Autoglosser2 gloss components

Component Description
0 impersonal
1P 1st person plural
1S 1st person singular
2P 2nd person plural
2S 2nd person singular
3P 3rd person plural
3S 3rd person singular
ABB abbreviation
ACR acronym
ADJ adjective
ADV adverb
AFF affirmative
am aspirate mutation
ANCL closing angle bracket
ANOP opening angle bracket
AR Arabic
AUG augmentative
BRCL closing brace (curly bracket)
BROP opening brace (curly bracket)
CO comma
COL colon
COMP comparative
COND conditional
CONJ conjunction
CYR Cyrillic glyphs
DEC decimal
DEF definite
DEM demonstrative
DET determiner
DIM diminutive
E exclamation
ELL ellipsis
EM emdash
EMPH emphatic
EN endash
ENG English
EXCL exclamation mark
F feminine
FAR far (demonstrative)
FOCUS item with focus
FS fullstop
FUT future
h pre-vocalic h- after 3S.F, 1P and 3P possessives
HAN Han glyphs
HY hyphen
HYP hypothetical
IM interactional marker

35

APPENDIX B. AUTOGLOSSER2 GLOSS COMPONENTS 36

Component Description
IMPER imperative
IMPERF imperfect
INFIN infinitive
INT interrogative
LET letter
M masculine
MF masculine or feminine
MISC miscellaneous (unspecified)
N noun
NAME name
NEAR near (demonstrative)
NEG negative
nm nasal mutation
NUM numeral
OBJ object
ORD ordinal
PACL closing parenthesis
PAOP opening parenthesis
PAST past
PL plural
PLUPERF pluperfect
POSS possessive
PREP preposition
PREQ pre-qualifier
PRES present
PRON pronoun
PRT particle
PUNC punctuation
QDB double quote
QSG single quote
QST question mark
QUAN quantifier
REFL reflexive
REL relative
ROM Roman
SCOL semi-colon
SG singular
sm soft mutation
SP singular or plural
SQCL closing square bracket
SQOP opening square bracket
SUBJ subjunctive
SUP superlative
TAG tag question
TOP toponym (placename)
UNK unknown
URL universal resource locator (web address)
V verb
YR year

Appendix C

CorCenCC tags

Tag Disgrifiad Description Enghraifft/example
Egu Enw, gwrywaidd unigol Noun, masculine singular ci
Ebu Enw, benywaidd unigol Noun, feminine singular cath
Egll Enw, gwrywaidd lluosog Noun, masculine plural cŵn
Ebll Enw, benywaidd lluosog Noun, feminine plural cathod
Egbu Enw, gwrywaidd/benywaidd

unigol
Noun, masculine/feminine
singular

meddalwedd

Egbll Enw, gwrywaidd/benywaidd
lluosog

Noun, masculine/feminine
plural

arferion

Epg Enw, priod, gwrywaidd Noun, proper, masculine Dafydd
Epb Enw, priod, benywaidd Noun, proper, feminine Cymru
YFB Y fannod benodol Definite article y, yr, ‘r
Arsym Arddodiad, syml Preposition, uninflected ar
Ar1u Arddodiad rhediadol, person

1af unigol
Inflected preposition, 1st
person singular

arnaf

Ar2u Arddodiad rhediadol, 2il
person unigol

Inflected preposition, 2nd
person singular

arnat

Ar3gu Arddodiad rhediadol, 3ydd
person gwrywaidd unigol

Inflected preposition, 3rd
person masculine singular

arno

Ar3bu Arddodiad rhediadol, 3ydd
person benywaidd unigol

Inflected preposition, 3rd
person feminine singular

arni

Ar1ll Arddodiad rhediadol, person
1af lluosog

Inflected preposition, 1st
person plural

arnom

Ar2ll Arddodiad rhediadol, 2il
person lluosog

Inflected preposition, 2nd
person plural

arnoch

Ar3ll Arddodiad rhediadol, 3ydd
person lluosog

Inflected preposition, 3rd
person plural

arnynt

Cyscyd Cysylltair cydradd Coordinating conjunction a, ac
Cysis Cysylltair isradd Subordinating conjunction ers, gan fod
Rhifol Rhifair, rhifolyn (0-10) Numeral, cardinal (0-10) saith, dau, dwy
Rhifold Rhifair, rhifolyn, degol

(11+)
Numeral, cardinal, decimal
(11+)

un deg un

Rhifolt Rhifair, rhifolyn,
traddodiadol (11+)

Numeral, cardinal,
traditional (11+)

ugain, dau ar
hugain, dwy ar
hugain

Rhitref Rhifair, trefnolyn (0-10) Numeral, ordinal (0-10) seithfed,
pedwerydd,
pedwaredd

Rhitrefd Rhifair, trefnolyn, degol
(11+)

Numeral, ordinal, decimal
(11+)

un deg wythfed

Rhitreft Rhifair, trefnolyn,
traddodiadol (11+)

Numeral, ordinal, traditional
(11+)

deunawfed

Anscadu Ansoddair cadarnhaol,
unigol

Adjective, positive, singular byr

Anscadbu Ansoddair cadarnhaol
benywaidd unigol

Adjective, positive, feminine
singular

ber

Anscadll Ansoddair cadarnhaol,
lluosog

Adjective, positive, plural byrion

37

APPENDIX C. CORCENCC TAGS 38

Tag Disgrifiad Description Enghraifft/example
Anscyf Ansoddair, cyfartal Adjective, equative byrred
Anscym Ansoddair, cymharol Adjective, comparative byrrach
Anseith Ansoddair, eithaf Adjective, superlative byrraf
Adf Adferf Adverb adref, felly
Be Berf enw Verb noun ariannu
Bpres1u Berf, presennol, person 1af

unigol
Verb, present, 1st person
singular

ariannaf

Bpres2u Berf, presennol, 2il person
unigol

Verb, present, 2nd person
singular

arienni

Bpres3u Berf, presennol, 3ydd person
unigol

Verb, present, 3rd person
singular

arianna

Bpres1ll Berf, presennol, person 1af
lluosog

Verb, present, 1st person
plural

ariannwn

Bpres2ll Berf, presennol, 2il person
lluosog

Verb, present, 2nd person
plural

ariennwch

Bpres3ll Berf, presennol, 3ydd person
lluosog

Verb, present, 3rd person
plural

ariannant

Bpresamhers Berf, presennol, amhersonol Verb, present, impersonal ariennir
Bpres3perth Berf, presennol, 3ydd person

perthynnol
Verb, present, 3rd person
singular relative

sy, sydd

Bdyf1u Berf, dyfodol, person 1af
unigol

Verb, future, 1st person
singular

byddaf

Bdyf2u Berf, dyfodol, 2il person
unigol

Verb, future, 2nd person
singular

byddi

Bdyf3u Berf, dyfodol, 3ydd person
unigol

Verb, future, 3rd person
singular

bydd

Bdyf1ll Berf, dyfodol, person 1af
lluosog

Verb, future, 1st person
plural

byddwn

Bdyf2ll Berf, dyfodol, 2il person
lluosog

Verb, future, 2nd person
plural

byddwch

Bdyf3ll Berf, dyfodol, 3ydd person
lluosog

Verb, future, 3rd person
plural

byddant

Bdyfamhers Berf, dyfodol amhersonol Verb, future, impersonal byddir
Bgorb1u Berf, gorberffaith, person

1af unigol
Verb, pluperfect, 1st person
singular

arianaswn

Bgorb2u Berf, gorberffaith, 2il person
unigol

Verb, pluperfect, 2nd person
singular

arianasit

Bgorb3u Berf, gorberffaith, 3ydd
person unigol

Verb, pluperfect, 3rd person
singular

arianasai

Bgorb1ll Berf, gorberffaith, person
1af lluosog

Verb, pluperfect, 1st person
plural

arianasem

Bgorb2ll Berf, gorberffaith, 2il person
lluosog

Verb, pluperfect, 2nd person
plural

arianasech

Bgorb3ll Berf, gorberffaith, 3ydd
person lluosog

Verb, pluperfect, 3rd person
plural

arianasent

Bgorbamhers Berf, gorberffaith,
amhersonol

Verb, pluperfect, impersonal arianasid

Bamhen1u Berf, amhenodol, person 1af
unigol

Verb, imperfect, 1st person
singular

ariannwn

Bamhen2u Berf, amhenodol, 2il person
unigol

Verb, imperfect, 2nd person
singular

ariannet

Bamhen3u Berf, amhenodol, 3ydd
person unigol

Verb, imperfect, 3rd person
singular

ariannai

Bamhen1ll Berf, amhenodol, person 1af
lluosog

Verb, imperfect, 1st person
plural

ariannem

Bamhen2ll Berf, amhenodol, 2il person
lluosog

Verb, imperfect, 2nd person
plural

ariannech

APPENDIX C. CORCENCC TAGS 39

Tag Disgrifiad Description Enghraifft/example
Bamhen3ll Berf, amhenodol, 3ydd

person lluosog
Verb, imperfect, 3rd person
plural

ariannent

BamhenamhersBerf, amhenodol,
amhersonol

Verb, imperfect, impersonal ariennid

Bgorff1u Berf, gorffennol, person 1af
unigol

Verb, past, 1st person
singular

ariennais

Bgorff2u Berf, gorffennol, 2il person
unigol

Verb, past, 2nd person
singular

ariennaist

Bgorff3u Berf, gorffennol, 3ydd
person unigol

Verb, past, 3rd person
singular

ariannodd

Bgorff1ll Berf, gorffennol, person 1af
lluosog

Verb, past, 1st person plural arianasom

Bgorff2ll Berf, gorffennol, 2il person
lluosog

Verb, past, 2nd person plural arianasoch

Bgorff3ll Berf, gorffennol, 3ydd
person lluosog

Verb, past, 3rd person plural arianasant

Bgorffamhers Berf, gorffennol, amhersonol Verb, past, impersonal ariannwyd
Bgorffsef Berf, gorffennol, sefydlog Verb, past, invariant ddaru
Bgorch2u Berf, gorchmynnol, 2il

person unigol
Verb, imperative, 2nd
person singular

arianna

Bgorch3u Berf, gorchmynnol, 3ydd
person unigol

Verb, imperative, 3rd person
singular

arianned

Bgorch1ll Berf, gorchmynnol, person
1af lluosog

Verb, imperative, 1st person
plural

ariannwn

Bgorch2ll Berf, gorchmynnol, 2il
person lluosog

Verb, imperative, 2nd
person plural

ariennwch

Bgorch3ll Berf, gorchmynnol, 3ydd
person lluosog

Verb, imperative, 3rd person
plural

ariannent

Bgorchamhers Berf, gorchmynnol,
amhersonol

Verb, imperative,
impersonal

arianner

Bdibdyf1u Berf, dibynnol dyfodol,
person 1af unigol

Verb, subjunctive, 1st
person singular

ariannwyf

Bdibdyf2u Berf, dibynnol dyfodol, 2il
person unigol

Verb, subjunctive, 2nd
person singular

ariennych

Bdibdyf3u Berf, dibynnol dyfodol, 3ydd
person unigol

Verb, subjunctive, 3rd
person singular

arianno

Bdibdyf1ll Berf, dibynnol dyfodol,
person 1af lluosog

Verb, subjunctive, 1st
person plural

ariannom

Bdibdyf2ll Berf, dibynnol dyfodol, 2il
person lluosog

Verb, subjunctive, 2nd
person plural

ariannoch

Bdibdyf3ll Berf, dibynnol dyfodol, 3ydd
person lluosog

Verb, subjunctive, 3rd
person plural

ariannont

Bdibdyfamhers Berf, dibynnol dyfodol,
amhersonol

Verb, subjunctive,
impersonal

arianner

Bamod1u Berf, amodol, person 1af
unigol

Verb, conditional, 1st person
singular

byddwn

Bamod2u Berf, amodol, 2il person
unigol

Verb, conditional, 2nd
person singular

byddit, byddet

Bamod3u Berf, amodol, 3ydd person
unigol

Verb, conditional, 3rd
person singular

byddai

Bamod1ll Berf, amodol, person 1af
lluosog

Verb, conditional, 1st person
plural

byddem

Bamod2ll Berf, amodol, 2il person
lluosog

Verb, conditional, 2nd
person plural

byddech

Bamod3ll Berf, amodol, 3ydd person
lluosog

Verb, conditional, 3rd
person plural

byddent, bydden

APPENDIX C. CORCENCC TAGS 40

Tag Disgrifiad Description Enghraifft/example
Bamodamhers Berf, amodol, amhersonol Verb, conditional,

impersonal
byddid

Rhapers1u Rhagenw, personol person
1af unigol

Pronoun, personal, 1st
person singular

mi, myfi

Rhapers2u Rhagenw, personol, 2il
person unigol

Pronoun, personal, 2nd
person singular

ti, tydi

Rhapers3gu Rhagenw, personol, 3ydd
person gwrywaidd unigol

Pronoun, personal, 3rd
person masculine singular

ef, efe

Rhapers3bu Rhagenw, personol, 3ydd
person benywaidd unigol

Pronoun, personal, 3rd
person feminine singular

hi, hyhi

Rhapers1ll Rhagenw, personol, person
1af lluosog

Pronoun, personal, 1st
person plural

ni, nyni

Rhapers2ll Rhagenw, personol, 2il
person lluosog

Pronoun, personal, 2nd
person plural

chi, chwychwi

Rhapers3ll Rhagenw, personol, 3ydd
person lluosog

Pronoun, personal, 3rd
person plural

hwy, hwynt–hwy

Rhadib1u Rhagenw, dibynnol, person
1af unigol

Pronoun, dependent, 1st
person singular

fy, ‘m

Rhadib2u Rhagenw, dibynnol, 2il
person unigol

Pronoun, dependent, 2nd
person singular

dy, ‘th

Rhadib3gu Rhagenw, dibynnol, 3ydd
person gwrywaidd unigol

Pronoun, dependent, 3rd
person masculine singular

ei, ‘i

Rhadib3bu Rhagenw, dibynnol, 3ydd
person benywaidd unigol

Pronoun, dependent, 3rd
person feminine singular

ei, ‘i

Rhadib1ll Rhagenw, dibynnol, person
1af lluosog

Pronoun, dependent, 1st
person plural

ein, ‘n

Rhadib2ll Rhagenw, dibynnol, 2il
person lluosog

Pronoun, dependent, 2nd
person plural

eich, ‘ch

Rhadib3ll Rhagenw, dibynnol, 3ydd
person lluosog

Pronoun, dependent, 3rd
person plural

eu, ‘u

Rhamedd1u Rhagenw, meddiannol,
person 1af unigol

Pronoun, possessive, 1st
person singular

eiddof

Rhamedd2u Rhagenw, meddiannol, 2il
person unigol

Pronoun, possessive, 2nd
person singular

eiddot

Rhamedd3gu Rhagenw, meddiannol, 3ydd
person gwrywaidd unigol

Pronoun, possessive, 3rd
person masculine singular

eiddo

Rhamedd3bu Rhagenw, meddiannol, 3ydd
person benywaidd unigol

Pronoun, possessive, 3rd
person feminine singular

eiddi

Rhamedd1ll Rhagenw, meddiannol,
person 1af lluosog

Pronoun, possessive, 1st
person plural

eiddom

Rhamedd2ll Rhagenw, meddiannol, 2il
person lluosog

Pronoun, possessive, 2nd
person plural

eiddoch

Rhamedd3ll Rhagenw, meddiannol, 3ydd
person lluosog

Pronoun, possessive, 3rd
person plural

eiddynt

Rhacys1u Rhagenw, cysylltiol person
1af unigol

Pronoun, conjunctive, 1st
person singular

minnau

Rhacys2u Rhagenw, cysylltiol, 2il
person unigol

Pronoun, conjunctive, 2nd
person singular

tithau

Rhacys3gu Rhagenw, cysylltiol, 3ydd
person gwrywaidd unigol

Pronoun, conjunctive, 3rd
person masculine singular

yntau

Rhacys3bu Rhagenw, cysylltiol, 3ydd
person benywaidd unigol

Pronoun, conjunctive, 3rd
person feminine singular

hithau

Rhacys1ll Rhagenw, cysylltiol, person
1af lluosog

Pronoun, conjunctive, 1st
person plural

ninnau

Rhacys2ll Rhagenw, cysylltiol, 2il
person lluosog

Pronoun, conjunctive, 2nd
person plural

chithau

APPENDIX C. CORCENCC TAGS 41

Tag Disgrifiad Description Enghraifft/example
Rhacys3ll Rhagenw, cysylltiol, 3ydd

person lluosog
Pronoun, conjunctive, 3rd
person plural

hwythau

Rhagof Rhagenw, gofynnol Pronoun, interrogative pa, pwy, ble, beth
Rhadangg Rhagenw, dangosol,

gwrywaidd
Pronoun, demonstrative,
masculine

hwn

Rhadangb Rhagenw, dangosol,
benywaidd

Pronoun, demonstrative,
feminine

hon

Rhadangd Rhagenw, dangosol, diryw Pronoun, demonstrative,
neutral

hyn

Rhaperth Rhagenw, perthynol Pronoun, relative a, y
Rhaatb Rhagenw, atblygol Pronoun, reflexive hun, hunain
Rhacil Rhagenw, cilyddol Pronoun, reciprocal gilydd
Uneg Unigryw, geirynnau

negyddol
Unique, negative particles dim, ni

Ucad Unigryw, geirynnau
cadarnhaol

Unique, affirmative particles mi, fe

Ugof Unigryw, geirynnau
gofynnol

Unique, interrogative
particles

a

Utra Unigryw, geiryn traethiadol Unique, predicative particle yn
Ebych Ebychiad Interjection oo, aa, hei
Gwest Gweddilliol, estron Other, foreign word anyway
Gwfform Gweddilliol, fformiwla Other, formula 9+x=y, E=mc2
Gwsym Gweddilliol, symbol Other, symbol €
Gwacr Gweddilliol, acronym Other, acronym GIG
Gwtalf Gweddilliol, talfyriad Other, abbreviation Cyf.
Gwdig Gweddilliol, digid Other, digit 1, 99, 2000
Gwllyth Gweddilliol, llythyren Other, letter A, B, Ch, a, b, ch
Gwann Gweddilliol, annosbarthedig Other, unclassified
Atdt Marc atalnodi, terfynol Punctuation mark, final . ? !
Atdcan Marc atalnodi, canolig Punctuation mark, medial , ; :, –
Atdchw Marc atalnodi, chwith Punctuation mark, left ([
Atdde Marc atalnodi, de Punctuation mark, right)]
Atdcys Marc atalnodi, cysylltnod Punctuation mark, hyphen -
Atddyf Marc atalnodi, dyfynnod Punctuation mark, quotation “” ‘ ’

